Title: Who is in your data? Data and Machine Learning Limitations in Health Research
Presenter: Dr. Elaine Nsoesie
Presented: May 9, 2019
Link: https://youtu.be/BcBv09cuFT8
About the presentation:
Data from a variety of sources, including social media and electronic health records, can provide insights into population health trends. These data can be used to track and measure health outcomes across geographic regions, time and complex social networks. However, these data also has the potential to exacerbate health inequalities if not properly used in public health research and practice. This talk will cover data and algorithmic bias, and potential unintended impacts on health services and equity.
About the presenter:
Dr. Elaine Nsoesie is an Assistant Professor of Global Health at Boston University (BU). She is also a BU Data Science Faculty Fellow, as part of the BU Data Science Initiative at the Hariri Institute for Computing. Dr. Nsoesie aims to use digital data and machine learning to improve population health. She applies data science methodologies to global health problems, particularly in the realm of surveillance of chronic and infectious diseases. She completed her PhD in Computational Epidemiology from the Genetics, Bioinformatics and Computational Biology program at Virginia Tech. She also has an MS in Statistics and a BS in Mathematics. She has written for NPR, The Conversation, Quartz and Public Health Post. Dr. Nsoesie was born and raised in Cameroon.