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Figure 1: (A) Whoosh is an interaction technique that captures non-voice acoustic input (e.g., blowing, shooshing, other dynamic
events), (B) using a commodity smartwatch without modifications and (C) with a custom-designed passive watch case. (D) Our
technique enables low-cost and rapid input, including multi-device events such as “sip” on the watch and “puff” on the phone.

ABSTRACT
We present an alternate approach to smartwatch interactions
using non-voice acoustic input captured by the device’s micro-
phone to complement touch and speech. Whoosh is an interac-
tion technique that recognizes the type and length of acoustic
events performed by the user to enable low-cost, hands-free,
and rapid input on smartwatches. We build a recognition
system capable of detecting non-voice events directed at and
around the watch, including blows, sip-and-puff, and direc-
tional air swipes, without hardware modifications to the device.
Further, inspired by the design of musical instruments, we de-
velop a custom modification of the physical structure of the
watch case to passively alter the acoustic response of events
around the bezel; this physical redesign expands our input
vocabulary with no additional electronics. We evaluate our
technique across 8 users with 10 events exhibiting up to 90.5%
ten-fold cross validation accuracy on an unmodified watch,
and 14 events with 91.3% ten-fold cross validation accuracy
with an instrumental watch case. Finally, we share a number
of demonstration applications, including multi-device interac-
tions, to highlight our technique with a real-time recognizer
running on the watch.
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INTRODUCTION
The emergence of smart devices (e.g., mobile phones, smart-
watches, and head-up displays) is redefining the way we access
data and produce information through everyday microinterac-
tions [2], interactions that take less than four seconds to initiate
and complete. The primary input modality for the smartwatch
and mobile phone is touch. Touch offers expressive multi-
touch capabilities and is intuitive. For example, recent work
demonstrates the possibility of performing text entry with a
smartwatch on-screen keyboard, using statistical decoding and
error correction [9]. However, touch input on the small screen
of a watch still requires targeted visual attention and a free
hand for interaction. Traditionally, occlusion and fat-finger
selection errors are two common challenges that hinder the
use of these small screens [14, 27].

With advances in connectivity and computing, phones and
smartwatches are capable of near real-time speech recognition.
Speech provides a fluid and hands-free way of communicating
intent and commands to a smart device. However, speech may
be tedious and not well suited to certain microinteractions,
such as repetitive input, scrolling, or swiping. In this paper,
we present an approach to smartwatch input using non-voice
acoustics to supplement touch and speech. Our input modality
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opens up opportunities for hands-free input on small screen
devices and also has implications for assistive technologies.
The “sip-and-puff” technique is popular for wheelchair con-
trols [7] and inspires some of our work. Our event set includes
blow events as well as other acoustically unique sounds (e.g.,
shoosh, double blow, long blow) produced by modulating the
shape of the mouth, tongue and throat. Non-voice acoustic
input on the smartwatch can be subtle, and with the device in
proximity to the mouth, can also be performed quietly or in
environments with high ambient noise.

Our event set and applications are designed around familiar
metaphors from mouse, touch and physical interactions. This
design consideration facilitates mapping non-voice acoustic
events to intuitive actions on the device. For example, a local-
ized blow on the bezel can be used to click a corner icon, air
swipes are useful for directional commands in the interface,
and sip-and-puff is used to “absorb” content and “deliver” it
to another device or application. Our system runs in real-time
and can be installed on commodity mobile platforms that are
equipped with a microphone. Further, through a completely
passive watch case modification, we can facilitate robust recog-
nition of an expanded set of input events.

Our work makes the following contributions:

• We describe an interaction technique using non-voice acous-
tic input for smartwatch interactions that enables low-cost,
hands-free, and rapid input.

• We introduce the use of passive, 3D-printed smartwatch
cases to expand the expressivity of events by introducing
air swipes, circular blows, and bezel blows.

• We provide empirical evidence of our recognition system
performance and limitations, through studies with 8 partici-
pants in the laboratory and 4 participants in-the-wild.

RELATED WORK

Interaction Techniques for Wrist-Worn Devices
Several custom-hardware solutions sense the surrounding sur-
face area of the wristwatch. Prior work includes approaches
with bio-acoustics [1, 6, 11], electromyography (EMG) [26],
capacitance [23], pressure sensing [5], proximity sensing [17],
and vision [15]. These solutions are capable of providing a
diverse input vocabulary, but suffer from limitations such as
bulkiness of hardware, occlusions for line-of-sight solutions,
cost and complexity. Instead, we use the microphone already
present in most commodity devices to enable new sensing
capabilities with a diverse event set.

Prior work also focuses on developing custom watch devices.
Facet provides a multi-display wristband consisting of mul-
tiple independent smartwatch screens, enabling a rich set of
touch input techniques [18]. Xiao et al. provide a multi-degree-
of-freedom mechanical watch face that supports continuous
2D pan and twist, as well as binary tilt and click [30]. Oakley
et al. use proximity sensing around the watch face to cap-
ture interaction on the edge of small devices [19]. WatchIt
introduces a custom watch band for eyes-free interaction [22].
While modifying the case or band around a smartwatch with
electronics may provide additional interaction capabilities, it

will also place varying degrees of power constraints on a de-
vice with limited battery capacity. We present the use of a
passive 3D-printed watch case — dubbed “FluteCase” — to
increase the expressivity of our event set, with no additional
demands on battery or computation. While our technique does
require an active microphone and continuous analysis, the
majority of smartwatches today are already “always-on” for
hotword detection (e.g., “Ok Google”). It could be possible
to modify this device functionality to include recognition of
Whoosh events.

Non-Voice Acoustic User Interfaces
Speech offers an expressive alternative to on-screen input,
but non-speech acoustics may also provide a secondary input
channel. Various types of non-speech input such as humming
and whistling are used to provide continuous input [28], and
Igarashi et al. demonstrate how duration, pitch and tonguing of
sounds are used for interactive controls [13]. Closely related,
others present interaction techniques using prosodic features
of speech and non-verbal metrics [10, 20]. Sakamoto et al.
propose a technique to augment touch interactions on a mobile
device with non-voice sounds as a parallel input modality [25].

Blowing is another type of non-voice acoustic interaction in
the literature, used for selection, gaming, entertainment, ac-
cessibility, or text entry [8]. Zyxio’s SensaWaft uses a MEMS-
based sensor array in a headworn microphone to detect blow-
ing, enabling bidirectional controls for scrolling, zooming, and
rotating a button dial [29]. BLUI is a fingerprinting technique
that localizes where a person is blowing on a laptop screen
and demonstrates accuracy of over 95% for 4x4 regions with a
single microphone [21]. Our work is inspired by BLUI’s initial
results, and Whoosh seeks to not only localize blowing on a
different form factor with a significantly smaller screen but
also to capture how a person is acoustically interacting with the
device. Blowatch proposes blowing air at a smartphone proto-
type with four external microphones simulating smartwatch
interactions [3], and presents a taxonomy for blowing events
on a watch. We use and extend this taxonomy in our event set,
by including blows and other types of non-voice acoustic input,
while implementing our system on a commodity smartwatch
with a single microphone.

INTERACTION TECHNIQUES WITH UNMODIFIED WATCH
We describe the space of input events we explore with an
unmodified smartwatch equipped with a single monophonic
microphone, and draw analogies to common mouse and touch
inputs.

Directed Blows
The short blow is the most basic event in our set with a quick
blow toward the center of the watch screen. Based on empirical
data from pilot studies, the typical length of a short blow is
200ms. In general, the spectrogram for this event (shown in
Figure 2A) exhibits saturation when blowing normally with
the device close to the mouth. For our users, we observed
10-20cm to be the typical distance between the mouth and
the device while blowing at the smartwatch. The double blow
extends the recognition of a discrete blow while capturing
consecutive short blows directed at the center of the screen,
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Figure 2: Spectrogram figures for unmodified watch events. The events displayed are: (A) short blow, (B) double blow, (C) long
blow, (D) swipe up, (E) swipe down, (F) clockwise blow, (G) shoosh, (H) open exhale, (I)-(J) sip-and-puff.

lasting between 400-500ms (see Figure 2B). The double blow
is analogous to a double click. The long blow consists of
a continuous blow aimed at the center of the watch screen,
typically longer than 500ms based on pilot study data (see
Figure 2C). The long blow is analogous to a press-and-hold
interaction from touch events.

Air Swipes
Similar to swipe gestures in touch-based interactions, air
swipes are directional events captured as air passes over the
watch screen and wind noise is captured by the microphone
(located at the bottom center of the bezel). Typical length
for swipes is 300ms. A swipe up is a continuous blow from
bottom-to-top of the bezel across the screen. Conversely, the
swipe down begins at the top of the bezel and ends at the bot-
tom. See Figures 2D-E. A circular blow is a continuous swipe
performed in a clockwise direction around the bezel. The blow
starts and ends at the bottom center of the bezel, where the
microphone is located. Based on training data, we observed
circular blows lasting up to 1 second (see Figure 2F).

Non-Voice Sounds
A shoosh sound is produced by modulating a blow with curled
tongue and pursed lips. A shoosh is typically used to indicate
a form of silence or dismissal in the interface. Typical length
is about 200ms (see Figure 2G). An open-mouth consists of
the user exhaling toward the watch screen with their mouth
open. This action is similar to fogging your eyeglasses with
your breath. Typical length is about 300ms (see Figure 2H). A
sip is performed with pursed lips similar to using a drinking
straw. Compared to other events, the sip is an inhale and can
be used to indicate directionality away from the device. A puff
accompanies the sip event. A strong “p” sound distinguishes
the puff from a short blow. Typical length for sip-and-puff is
about 200ms (see Figures 2I-J).

WHOOSH
Whoosh runs in real-time on the smartwatch and performs
audio recognition on incoming microphone data.

Theory of Operation
The main parts of voice and acoustic production are the lungs,
the larynx or vibrator, and the resonator system. Air is exhaled

out of the lungs and passes through the larynx, which contains
the vocal folds. For blow events, air passes through relaxed
folds and lung capacity determines the forcefulness of the blow.
For non-voice sounds, the airstream passes between the vocal
folds as they vibrate between 100Hz to 1kHz. The muscles in
the larynx control the pitch based on the length and tension of
the vocal cord. As the folds vibrate, they produce a buzzing
sound at different frequencies, similar to the mouthpiece of a
trumpet. The resonator system, consisting of the throat, nose,
and mouth, alter the pathway to produce human speech and
other sounds, similar to the structures of a musical instrument.

Our system focuses on both the wind noise detected by the
microphone while blowing, as well as non-speech human
sounds. Depending on the forcefulness of a blow or non-voice
event, proximity to the microphone, and the direction of the
user’s mouth, we observe different phenomena. A blow event
may produce either a broadband frequency response through
the microphone or exhibit distortion from clipping caused by
non-linear behavior of the electronic components and power
supply limitations (Figures 2A-F). We use this distortion to our
advantage to minimize false positives and uniquely identify
particular events. Other events such as shoosh, open, and sip-
and-puff exhibit distinct spectral patterns with energy up to
approximately 10kHz (Figures 2G-J). After isolating an event
and extracting features based on its frequency response, we
infer the type and location of the event based on pre-trained
audio fingerprinting using a machine learning classifier.

Implementation
We use an LG G (Android) Watch with a single microphone
located at the bottom center of the bezel of its 1.65 inch touch
screen, as well as a Motorola Droid Turbo (Android) smart
phone to explore multi-device interaction. The microphones
on both devices are sampled at 48kHz using the default mi-
crophone source, 16-bit PCM encoding, with no audio gain
or noise suppression. TarsosDSP1 handles audio management
and recording. The library delivers a float[] audio buffer at
preset frame intervals for processing in real-time.

Segmentation: This task focuses on determining when an
event of interest occurs within the audio stream. For training

1https://github.com/JorenSix/TarsosDSP
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purposes, users are prompted to provide input and audio is
recorded for each event individually in 2-second windows. In
our offline analysis, we implement a form of silence detector
using a rolling variance to isolate the beginning and end of
the event in each audio file. We use a forward and backward
threshold search to account for events with silence occurring
during the event (e.g., double blow), and empirically determine
a threshold robust to noise around the event. We then expand
the trimmed window outward around the isolated data by a
preset number of frames to ensure full capture of the event
and pass it to our feature extractor. For our real-time pipeline,
we use a silence detector based on the energy of an audio
frame (approximately 20ms). We maintain a buffer of audio
frames that comprise an input event and use a heuristic timing
threshold when silence is detected during an actual event (e.g.,
double blow). Once the event input buffer is full, the audio
data is passed to the feature extractor.

Feature extraction: In order to capture directional events,
we divide our segmented signal into two window slices of
equal length. Dividing the audio signal in two halves aids in
capturing salient features occurring about the center of the
event. Mel-frequency cepstral coefficients (MFCCs) are a set
of acoustic features modeling the human auditory system’s
non-linear response to different spectral bands. We calculate
a 26-dimension MFCC with band edges from 0Hz to half the
sampling rate at 24kHz. We calculate the sum of each MFCC
coefficient for all frames (20ms frame, 10ms overlap) in each
half of the audio signal, with the energy as the first coefficient.
The MFCC vectors for each half add up to a total of 52 fea-
tures. We use an additional 26 features based on the deltas
of the MFCC coefficients. The features are normalized for
classification. We run principal component analysis (PCA) on
these features to facilitate our real-time classification.

Classification: We use a support vector machine (SVM) algo-
rithm trained using Weka’s sequential minimal optimization
(SMO) implementation with a cubic polykernel and default
parameters.

TECHNICAL EVALUATION FOR UNMODIFIED WATCH
We conduct a technical evaluation of our interaction tech-
niques with an unmodified watch in the usability lab of our
institution. Eight participants (5 male, 3 female, ages 22-34)
are part of our user study. Participants wear the watch on the
left hand. To begin, researchers perform a demonstration of
each technique. Participants familiarize themselves with our
data collection application with a practice round. During the
evaluation, a visual stimulus is presented to the participant on
the watch screen prompting them to perform a given event.
Audio is recorded for 2 seconds after the prompt, with a one
second pause between events. Each event is recorded in an
individually labeled audio file for segmentation. The partici-
pants perform four rounds of data collection for 10 events. In
each round, participants perform 5 examples for each event.
The order of the stimulus is randomized across each round. In
summary, our user study includes 8 participants x 10 events
x 4 rounds x 5 samples per event for a total of 1600 event
samples. We discard a total of four instances where the re-
searcher observes the participant perform the wrong event or

our segmentation determines the event is not fully captured
within the time window. Participants are allowed to rest, drink
water, remove the watch, or leave the room between sessions
if desired.

Per-User and General Classifiers
We evaluate our technique by applying 10-fold cross validation
on each individuals’ collected instances. The overall average
per-user accuracy across 8 participants and 10 events is 90.5%
(sd=3.9%). P1 achieves the highest accuracy at 98.5% and P7
achieves the lowest accuracy at 86.0%. We observe that P7
held the device farther from the mouth than other participants,
roughly more than 20cm. The distance away from the mouth
results in weaker signals at the microphone making it difficult
to distinguish between events. We present the confusion matrix
of our results in Figure 3. The lowest precision of 78.8% is
observed for the double blow event, mostly confused with a
short blow. In some cases, participants perform the double
blow quickly, effectively being recognized as a short blow.
The shoosh event achieves the highest accuracy at 98.8%.
We also evaluate how our system generalizes across users.
Preliminary leave-one-participant-out analysis (i.e., test with
one participant, train with the rest) across 8 participants and
10 events results in overall accuracy of 71.3% (sd=7.2%).

Evaluation of Activation Event In-The-Wild
We demonstrated our recognizer is capable of discriminating
10 events with our in-lab study and our technique is feasible
on smartwatches available today. However, to minimize un-
intentional activation during real-world use, activation events
are designed to distinguish intentional interactions from every-
day activities. Activation events should ideally be extremely
resistant to false positives while achieving high recognition
rates [24]. Once the system is activated, all other input events

Figure 3: Confusion matrix averaged across all users (in %).
Rows represent ground truth and columns are predicted values.
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Figure 4: FluteCase and interactions. (A) FluteCase designs for both square and round watch faces, (B) Translucent rendering of
the square FluteCase’s 3D model with tube labels, (C) Bezel blows, (D) Air swipes, and (E) Circular blows.

are recognized. We design an activation trigger consisting of
a double blow. While double blow presents some confusion
with our classifier (see Figure 3), we believe it would be robust
against detecting noise. We present results for false negatives
with double blow performed in-the-wild by 4 participants, and
false positives with noise only recorded by 4 researchers.

False positives (fp): We record smartwatch ambient data where
there is no intentional input from 4 researchers on this project.
In total, we record 11hr:36min of ambient audio at 48kHz
sampling rate. Our data collection is limited only by the battery
life of the smartwatches used, and the longest recording is
approximately 3 hours on a LG G Watch. We apply a highpass
filter above 15kHz to isolate any activation event that exhibits
clipping and remove most ambient noise below 4-7kHz. We
then apply a peak detection algorithm to identify double blow
events. Our recognizer mislabels noise as a double blow event
15 times, resulting in a 1.3 fp/hour rate. Most confusion is
observed during hand washing at the sink and several forceful
coughs.

False negatives (fn): We recruit 4 participants from our pre-
vious study to perform the double blow activation gesture
in-the-wild. We ask each participant to wear the watch for
at least 4 hours during the day and perform the double blow
when prompted. Our application prompts participants by vi-
brating the watch and presenting on-screen feedback. Prompts
are delivered using a random Poisson process with an average
delivery time of 4 minutes. To preserve battery, we record only
one minute of audio data after prompting the user. In total,
the four participants were prompted 174 times. We discard
22 missed instances where the participant did not perform the
gesture, based on visual analysis and acoustic inspection of
the data. Our peak detection search algorithm correctly identi-
fied the double blow 149 out of the remaining 152 instances,
resulting in 98.0% accuracy.

DISCUSSION & LIMITATIONS FOR UNMODIFIED WATCH
During our initial exploration into the design of our event
set, we experimented with swipes in all directions (i.e., up,
down, left, and right). Given that we use a smartwatch with
a single front-facing microphone at the bottom center of the
bezel, we found intuitively that the location of the microphone
was key to discriminating between events. A continuous blow
approaching from the left or the right and passing over the
microphone appear symmetrical, and thus are difficult to dis-
criminate in the recognizer. In contrast, swipes up and down

begin either at or away from the microphone, making it easier
to recognize them as unique events.

Additionally, we also experimented with localizing directional
blows on the arm to the left and right sides of the watch, as
well at the top, bottom, left, and right target areas on the
bezel. In prior work [21], researchers localize up to 5x5 events
with a single microphone on a laptop screen roughly an order
of magnitude larger than a smartwatch screen. However, on
our platform, the single microphone and small size of the
watch did not provide the ability to readily disambiguate such
inputs. To address these limitations and expand the Whoosh
vocabulary, we design a custom 3D-printed watch case.

FLUTECASE: A PASSIVE 3D-PRINTED WATCH CASE
FluteCase is a custom 3D-printed watch case for both square
and circular smartwatches that alters the acoustic response of
blowing events on and around the smartwatch. The case pro-
vides a low-cost and entirely passive (meaning no electronics
nor battery usage) means of expanding the range of inputs that
are recognized by our system. In this section, we describe the
phenomena and inspiration for our design of passive modifi-
cation of the physical structure of the watch, based on wind
instruments and prior work altering the speaker-microphone
pathway on mobile phones [16].

Acoustic Phenomena
When air is blown into a tube-shaped resonator, standing
waves are created that cause the air to vibrate and produce
sound. For closed pipe wind instruments like ours, the pitch
of the vibration is determined by the length of the tube. For
example, the Greek pan flute has multiple tubes with different
lengths open at one end for blowing and is closed at the other
end. Closed pipe resonators do not require finger operation
and their fundamental air resonant frequencies are defined by:

f =
v
λ

[Hz] (1)

where f is the air resonant frequency, v is the speed of sound,
λ = kL is the wavelength, where k is a constant determined by
open or closed pipe and L is the length of the pipe. Generally,
the shorter the pipe is, the higher the resonant frequencies
produced.

Design of the FluteCase
We draw inspiration from the structure of closed pipe instru-
ments to design our 3D-printed FluteCase. We develop both
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Figure 5: Spectrograms for FluteCase events: (A) swipe left, (B) swipe right, (C) swipe down, (D) swipe up, (E) clockwise, (F)
counterclockwise, (G) bezel blows (labeled on the figure) starting from the lowest to highest resonant frequency.

square and round watch versions to suit a variety of commer-
cial devices (see Figure 4A). The cases have 8 closed pipe
tubes of different lengths, each with an open hole. The tubes’
“head” (the end with the open hole) and “tail” (the closed end)
are connected to each other. In the case of a circular smart-
watch, the head and tail form a ring shape around the watch
display. A base that fits the shape and size of the watch bezel
attaches tightly to the watch. The eight tubes are designed to
resonate at eight distinct frequencies between 2kHz to 10kHz,
allowing blows near particular regions of the watch face to
be readily disambiguated. For replicability, we describe the
dimensions of the square case used during our user evaluation.
The overall width, length, and depth of the square case are
45.60 mm, 51.06 mm, and 5.58 mm, respectively. The diame-
ter of each hole is 4.05 mm. The width of each circular tube is
constant at 4.096 mm. The length of each tube is defined by:

L = 14.956∗2
i

12 [mm] (2)

where L is the length of each tube as a function of i, which
denotes the ith tube (labeled in Figure 4B).

INTERACTION TECHNIQUES WITH FLUTECASE
The FluteCase design greatly expands the range of non-voice
acoustic interactions with smartwatches, allowing recognition
of an additional 6 swiping blows and 8 bezel blows. A blow
event over each FluteCase hole creates a slightly audible tone
generated by the airflow entering the resonator tube. We use
the same recognition pipeline described for the unmodified
watch scenario, as our segmentation is adaptive to variable
event lengths. Bezel blows and swiping blows are shown
visually in Figures 4C-E.

Swiping Blows
Blowing over two or more FluteCase holes in a swiping fash-
ion enables six additional input events. Air swipes are single
blows across the watch face traversing two holes in the follow-
ing directions: left-right, right-left, top-bottom, or bottom-top.
Circular blows are swipes along the edge of the watch, travers-
ing all holes, in a clockwise or counterclockwise direction
beginning at the bottom center location. The spectrograms for
all swiping blows are shown in Figures 5A-F.

Bezel Blows
Bezel blows are discrete events performed by the user in a
single-action blowing at one of the eight holes distributed
evenly around the watch case. Corner bezel blows consist
of a continuous blow at one of the four corner targets of the
watch case. These events are: topleft (tl), topright (tr), bottom-
left (bl), bottomright (br). The next set of events are D-pad
bezel blows. In this spatial arrangement, a continuous blow
is directed at FluteCase target locations emulating a D-pad
keypad configuration. These events are the remaining bezel
locations: topcenter (tc), centerleft (cl), centerright (cr), and
bottomcenter (bc). The spectrogram for bezel blows starting
from the lowest to highest resonant frequency is shown in
Figure 5G.

TECHNICAL EVALUATION FOR FLUTECASE
We conduct a technical evaluation of our new event set with a
FluteCase-mounted smartwatch using the same device, partic-
ipants, and pipeline as the previous study. Our data collection
for this condition includes 8 participants x 14 events x 4 rounds
x 5 samples per event for a total of 2240 event samples. We
discard a total of 61 instances (roughly less than 5 out of 160
samples per event) in which participants either perform the
wrong event or the event is not fully captured within the time
window. We evaluate how the system performs on a per-user
level using 10-fold cross validation and how it generalizes
across participants using leave-one-participant-out analysis.

For 10-fold cross validation, the average accuracy across 8
users and 14 events is 91.4% (sd=5.3%). P10 achieves the
highest accuracy at 96.4% and P7 achieves the lowest accuracy
at 80.4%. We present the confusion matrix of our results in
Figure 6. The lowest precision of 81.6% is observed for both
the clockwise and counterclockwise events. Both of these
are more complex gestures that require blowing over all eight
bezel locations. The bottomcenter event is the most accurate
with accuracy of 99.4%. We suggest the main reason for the
highest accuracy is that the microphone is located directly
underneath the bottomcenter bezel hole, resulting in a clearer
signal. Preliminary leave-one-participant-out analysis across 8
participants and 14 events results in overall accuracy of 79.7%
(sd=9.7%).
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Figure 6: Confusion matrix for FluteCase across all users (in
%). Rows are ground truth and columns are predicted values.

DEMONSTRATION APPLICATIONS
We implement several demonstration applications that high-
light the potential for Whoosh interactions, with both the
unmodified watch and FluteCase. We refer the reader to the
video accompanying this paper for live demonstrations of each
application.

Unmodified Watch Applications
Notifications: Quick access to notifications or quick actions
without having to use a mobile phone is arguably one of the
most compelling features of a smartwatch. Our notifications
app shows examples of how Whoosh facilitates such interac-
tions. Our app enables discrete selection between one or two
buttons on-screen. We use our event recognizer to silence or
dismiss an incoming call notification with a shoosh event, and
answer the call with a single blow acknowledgment.

Authentication: A person can also use a sequence of Whoosh
events as an additional layer of security on their devices. The
smartwatch can automatically lock whenever the user removes
it from the wrist. In our application, a lock screen pops up
and a pre-determined sequence of Whoosh events is used to
unlock the device. Whoosh events on the watch could also
be used as a physical authentication challenge to complete a
purchase on another device (e.g., mobile phone or desktop).

Speech + Whoosh: Whoosh events can be combined with
speech to create a mixed interaction modality. In our messag-
ing application, a user dictates the content of a text message
and uses Whoosh events to manipulate the text. A long blow
is used to backspace and a short blow is used to send the
message when complete. The user quickly mode switches
between speech and Whoosh input using a double blow, or
could potentially use a flick of the wrist.

Multi-Device Handoff : When Whoosh is run in parallel on
both the smartwatch and phone, it can enable a robust set of
multi-device events. For example, we explore interactions
between the watch and the phone held in the same hand. In-
spired by the stitching technique [12] and Duet [4], we support
two multi-device events: watch-to-phone and phone-to-watch
sip-and-puff. Sip-and-puff provides an intuitive metaphor to
transfer tasks from one device to another. In our demonstra-
tion, a sip event on the watch “absorbs” content on the watch
screen and a puff event remotely delivers the content to the
phone. This allows, for instance, a user who receives an email
notification on the watch to transfer and view the entire mes-
sage on a larger device.

FluteCase Applications
Maps: Whoosh enhances navigation on a map by providing
the following actions. Panning the map is enabled by bezel
blows. In our application, the map shifts in the direction
towards the FluteCase hole that the user blows. Continuously
blowing into the same hole could keep the map moving in that
direction. A total of eight panning directions are enabled with
the FluteCase. Zooming is enabled by circular blows. In our
demonstration, a circular blow in the clockwise direction will
zoom in the map while the counterclockwise direction will
zoom out. An air swipe up or down allows the user to traverse
layers of hierarchical content. In our application, a swipe
down reveals the various map views (e.g., satellite, terrain)
and a swipe up returns up the stack.

Application Shortcuts: Smartwatches are intended to minimize
the time between intent and action [2]. In our demonstration,
eight app icons are displayed on the watch home screen aligned
with the FluteCase holes. The user blows at any of the Flute-
Case target locations to open the associated app on the watch
itself or potentially on the mobile phone.

DISCUSSION AND FUTURE WORK
Using audio for interaction can always present potential pri-
vacy concerns as the device may capture spoken input from
the user. Whoosh focuses on non-speech audio recognition
based on extracted features and does not store any raw audio.
Furthermore, the Whoosh recognizer is lightweight and runs
in real-time on the device. Thus, we do not require sending
audio to the cloud for additional computational power and
processing.

Whoosh is well-suited as a complementary input modality for
smartwatches. A multimodal approach enables more complex
and potentially parallel forms of input. “Chording” or combin-
ing Whoosh events with touch, speech, or motion provides a
new set of fluid interactions. One potential example includes
“clutch” mechanisms. An air swipe might be used to trigger
sending an SMS. A flick of the wrist after the event could
cancel, or a touch down during the event could immediately
confirm the intended action. Such a mechanism provides a
lightweight confirmation step for microinteractions that are
irreversible.

The Whoosh recognizer running on a commodity watch with-
out modification enables various simple microinteractions.
FluteCase enables an expanded set of interactions but requires

126

SESSION: INTERACTION



modifying the physical structure of the watch. To achieve
a richer vocabulary, there is a trade-off between passive ap-
proaches such as FluteCase and other solutions at the hardware
level. Potential opportunities, which we have not yet explored,
include increasing the number of microphones or altering mi-
crophone placement.

We have begun exploring the use of Whoosh in-the-wild. Our
initial evaluation of our activation event with the unmodified
watch assesses false positives and negatives. Our segmenta-
tion is tuned to be robust to noise (as demonstrated in our
video figure). For future work, we want to further assess how
environmental sounds, such as wind and other unforeseen am-
bient noise, may potentially impact our system. We could
also redesign the FluteCase to minimize the pathway for am-
bient sounds. Improving the machine learning pipeline could
also address these issues. User variability across events is an-
other challenge. Personalization of our classification models
to dynamically incorporate new users’ data may improve user
independent performance.

CONCLUSION
Whoosh is a sensing technique that uses non-voice acoustic
input for microinteractions on smartwatches. Our system ex-
ploits the unique signature of sounds generated by the user to
enable low-cost, hands-free, and rapid input on commodity de-
vices. We evaluate the performance of our unmodified watch
recognizer with 8 participants and 10 events. Our recogni-
tion system achieves 90.5% accuracy using a single classifier
and per-user cross validation models. Using FluteCase, our
3D-printed passive case around the smartwatch, we alter the
acoustic response captured by the microphone to enable 14 ad-
ditional interactions and achieve 91.3% accuracy with per-user
cross validation. We detect and classify non-voice acoustic
signals in real-time on the device. We conclude with a set of
example applications that highlight our technique and demon-
strate the design space and opportunities enabled by Whoosh.
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