
Emu: Engagement Modeling for User
Studies

Bo-Jhang Ho
University of California, Los
Angeles
Los Angeles, CA 90095, USA
bojhang@ucla.edu

Nima Nikzad
Scripps Translational Science
Institute
La Jolla, CA 92037, USA
nnikzad@scripps.edu

Bharathan Balaji
University of California, Los
Angeles
Los Angeles, CA 90095, USA
bbalaji@ucla.edu

Mani Srivastava
University of California, Los
Angeles
Los Angeles, CA 90095, USA
mbs@ucla.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
.
UbiComp/ISWC’17 Adjunct, September 11-15, 2017, Maui, HI, USA © 2017
Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5190-4/17/09.
https://doi.org/10.1145/3123024.3124568

Abstract
Mobile technologies that drive just-in-time ecological mo-
mentary assessments and interventions provide an un-
precedented view into user behaviors and opportunities
to manage chronic conditions. The success of these meth-
ods rely on engaging the user at the appropriate moment,
so as to maximize questionnaire and task completion rates.
However, mobile operating systems provide little support to
precisely specify the contextual conditions in which to notify
and engage the user, and study designers often lack the ex-
pertise to build context-aware software themselves. To ad-
dress this problem, we have developed Emu, a framework
that eases the development of context-aware study appli-
cations by providing a concise and powerful interface for
specifying temporal- and contextual-constraints for task no-
tifications. In this paper we present the design of the Emu
API and demonstrate its use in capturing a range of scenar-
ios common to smartphone-based study applications.

Author Keywords
Context-aware; mobile applications; engagement; just-in-
time assessment; push notifications; user studies; mhealth

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous; D.3.3 [Language Constructs and Features]:
Frameworks



Introduction
In recent years, many behavior and health related stud-
ies have leveraged mobile apps to improve study protocol
adherence and participant engagement [11, 16]. Notifica-
tions from such apps can help with adherence to study re-
quirements - such as updating a food diary after each meal
or measuring blood pressure after exercise - while reduc-
ing the cognitive load associated with participation in such
studies [11]. However, phone users already receive a mean
of 63 notifications per day [15], and ill-timed interruptions
can be distracting and affect productivity [2]. To maximize
participation value and improve study adherence, notifica-
tions must be both contextually relevant and timely [5].

While prior works have presented robust and efficient context-
recognition algorithms [8], adoption of these techniques to
drive study-related notifications has been slow. Specifying
contexts precisely is challenging because: (i) keeping track
of interrelated event- and context-driven tasks can be com-
plex and error prone, and (ii) there is no interface for track-
ing user behavior and adjust app logic. Thus in practice,
most such applications are simply driven by time-based
constraints, e.g. notify to log food at 8AM and 6PM [5, 11].

To address these challenges, we introduce Emu, a frame-
work for developers to concisely and precisely specify when
and how to engage users. Emu relieves the developer of
the burden of tracking contextual states and delivers notifi-
cations when the required conditions are met. Emu tracks
responses to notifications and schedules future notifications
accordingly. We show that Emu can concisely capture a
wide variety of scenarios common to user studies.

Building a Context-aware Study App
We consider three stakeholders in the life cycle of a study
app: (i) a study designer, the domain expert conducting

the study, (ii) a developer, who translates study specifica-
tions into code, and (iii) a user, the study participant. In our
example study, the designer would like to collect blood pres-
sure (BP) measurements after each workout to monitor the
health status of hypertensive patients. These requirements
translate to detailed specifications for the developer.

For simplicity, we only consider running as workout. When
a run session exceeds 15 minutes, the study app will notify
the user to take a BP measurement. Each user is provided
a Bluetooth enabled BP monitor that communicates with
the study app, and the app will only remind the user to take
measurements if they are close to the BP instrument within
an hour of their run session. If the user ignores the notifica-
tion, the app will retry displaying the notification two times.
If the user fails to measure BP for a week, an encourage-
ment is sent to comply with the study requirements. This
example highlights just some of the features that a robust
study app must support, and is informed by literature review
and informal discussions with study designers.

Challenges in Scheduling Notifications
Smartphone OSes and third-party libraries provide some
support for building such apps. Android and iOS support
detection of contexts such as running and proximity to Blue-
tooth devices, and Apple ResearchKit1 assists development
of questionnaires and intervention tasks. But, scheduling of
notifications is limited to time or location based reminders.

Matching complex events: Consider the condition for
sending a notification as running for 15 minutes. The app
needs to start a countdown timer when the user starts run-
ning. If the user stops running before the timer hits zero,
the timer is invalidated; otherwise, the notification is sent.
The complexity increases as we add more conditions: if the

1http://researchkit.org/



study accepts either running for 15 minutes or walking for
1 hour, then two independent timers will need to monitor
each activity. When the condition requires ordered events,
such as a run session followed by closeness to BP machine
within 1 hour, the app needs to implement the transition
logic and maintain timers accordingly. Maintaining different
timers is akin to parallel programming and is known to be
difficult and error prone. Emu handles all of the timing and
condition matching for the developer.

Context
Monitoring

Notification
Delivering

Intervention

Success

User responds
the notification

Trigger time out

Notification
got snoozed

Task registered

Intervention
complete

report()

Intervention
time out

Notification
time out

report()

report()

report()

Figure 1: Life of a task.

Monitoring the user: If the user doesn’t goes for a run or
gets close to the BP machine, then the app needs to check
this condition to nudge the user to comply. If the user ig-
nores the notification, the app needs to monitor it’s status
and send a reminder. When the user successfully mea-
sures the BP after a notification is sent, the app should stop
creating more notifications. Emu keeps track of all these as-
pects for the developer and reports the status with a single
callback after the task is finished.

Historical matching: Sometimes the condition may de-
pend on previous activities. In our example, a notification is
sent if the user does not take BP measurements for a week.
The developer needs to create a database to store this in-
formation and update it each time user measures BP. Emu
automatically logs these events and queries the database
internally for developers.

Related Work
Prior works have studied interruptibility extensively [6, 9,
14]. These works focus on identifying interruptibility from
sensor data [6], prior interactions [9], physical activities [13]
and other contexts [14]. However, these works do not con-
sider application specific requirements for engaging the
user. Bainomugisha et al. [3] propose a language for pro-
gramming context-aware apps. However, their system does

not support timing constructs essential for scheduling notifi-
cations. STFL [4] proposes a spatio-temporal framework to
specify contextual triggers and is closest to our work. STFL
is a Python library and is an independent system. In con-
trast, Emu is designed for interruptibility using smartphones
and wearables. Hence, Emu keeps track of user actions,
snoozes notifications, logs events for querying.

Emu: Framework Overview
Design of Emu was informed by a thorough literature sur-
vey, prototype building, and interviews with two study de-
signers experienced in developing seven research studies
that utilized mobile apps for monitoring of subjects. This
section presents the design and features of Emu.

Emu Tasks
To ‘register’ a notification, a developer specifies: (i) when
the notification should be triggered, e.g., at 6PM, or when
the user’s heart rate is high, (ii) the content of the notifi-
cation, e.g. a message of encouragement, and (iii) what
action to take when the notification is selected or replied to.
While specifying the content of a notification is straightfor-
ward via the standard APIs, managing the timing of notifi-
cations is not: such code is typically event-driven, requiring
callback functions that track changes in user context and
time, and respond accordingly. Emu bundles the aforemen-
tioned components and calls it a Task. The life cycle of a
Task is summarized in Figure 1.

The TaskBuilder class is used to specify the details rele-
vant to a task’s content, contextual trigger, and any actions
to trigger when replied to. To tackle the complexity of speci-
fying variety of options in a task, we use the the builder de-
sign pattern2. With this pattern, the developer can concisely
create the task in a flexible, step by step manner.

2https://en.wikipedia.org/wiki/Builder_pattern



Task taskBP = TaskBuilder.create ()
.repeat(‘every day’)
.when(‘walking for 1 hours

or running for 15 minutes’
.then(‘nearBPMachine within 1 hours’)
.notify(‘Measure blood pressure ’,

PRIORITY_MEDIUM ,
‘snooze 2 times’, ‘every 15 mins’)

.launch(bpActivity)

.report(bpCallBack , ‘timeout 2 hours’)

.startTask(BP_TASK_ID );

Figure 2: Example code of registering a task in Emu. The bold
font are reserved keywords in Emu.

Developers can register a repeating task by specifying the
frequency (e.g., "every 2 days") via the repeat() method.
The interval() method gives the time period in which no-
tification can be sent, e.g., "10am to 12pm". The when()
and then() methods specify the contextual condition, such
as "walking for 1 hour or running for 10 minutes". The notify()
method specifies the content of a notification and options
such as priority and the number of times to repeat the no-
tification if it is not acted on. After the user responds to
the notification, the view (or Activity in Android) given in
launch() will appear. report() specifies the callback
method to which the result of the Task (completed, ignored,
failed to trigger, etc.) is provided. Finally, startTask() reg-
isters the task with an ID, with which the developer can
modify or check the status of a Task later. Figure 3 sum-
marizes the purposes of Emu methods, and Figure 2 imple-
ments the blood pressure example using TaskBuilder.

.repeat(frequency): Specify
the periodicity of the Task. If
omitted, it is a one-time Task.

.interval(period): The effec-
tive period of the Task.

.when(condition): A context
required to display the Task.

.then(condition): An (op-
tional) context to wait for,
after when has been satisfied,
before triggering the Task.

.notify(text, param): The
content of the notification.
Parameters include the prior-
ity, number of times allowed
to snooze the notifications,
and the retry interval.

.launch(view): The view
presents the requirements,
for instance, interventions.
The view appears when the
user clicks the notification.

.report(callback): Spec-
ify the callback function to
report task results to.

.startTask(taskId): Reg-
ister the Task to the Task
Manager.

Figure 3: Summary of the fields in
Task class.

We designed the Task structure to be flexible for develop-
ers. They can skip when() if they only want randomized
time-based notifications. They can skip notify() for inter-
nal context tracking if user action is not required. report()
can be used to activate other tasks based on user actions.

Contextual Triggers
Emu uses when() and then() to support complex contex-
tual conditions. The condition can be a boolean expres-
sion with and, or, and not operators, e.g. “running and
heartRate > 100”. Developer can specify the duration for
which a condition must hold using the for keyword, e.g.
“walking for 10 minutes”. The developer can choose to
log events such as BP measurements and query historical
values, e.g. “BPMeasurements < 2 in the past 1 week”.
A sequence of contextual triggers, each evaluated only af-
ter the previous is satisfied, can be specified with when()
followed by then(). There can be multiple then() clauses
in a task for a sequence of conditions. Contexts included
in the boolean expression are monitored in parallel and the
Task is triggered when the expression evaluates to true.

System Architecture
Figure 4 shows the system architecture of Emu. When a
task is started, the Query Parser extracts the string pa-
rameters and uses timed automata [1] to unambiguously
encode the contextual conditions and transitions to gener-
ate a Task object, and registers it with the Task Manager.
To evaluate the status of the task, Task Manager maintains
several clocks to trace the states of the automata. The Task
Manager makes use of the User Preference Manager
to account for user preferences (e.g. "Don’t make sounds
while at work") and Presentation Manager to decide
the style of notification (e.g. auditory channel via Alexa).
All sensing and context inference is handled by various
Sensing Modules, which are simply wrappers around ex-
isting OS- and library-provided context inference modules,
derived from both built-in phone sensors (e.g. walking de-
rived from inertial sensors) or external IoT devices (e.g. BP
machine). Emu records all the task reports and developer
specified events along with their timestamps in the Event
Database. Historical queries are directed to this database.



Description

Naughton et al [12] Provide just-in-time intervention when a smoker enters a smoking area.
A-CHESS [7] Help people quit alcohol. Relaxation instruction are provided when near liquor stores or bars.

MH2 [10] Aim for delivering therapy to ADHD kids. Time-based reminder for surveys and taking medicine.
SitCoach [17] When prolonged sitting is detected, users are asked to walk for 10 minutes.

Table 1: Examples of app-based studies whose behavior can be concisely expressed using the Emu framework.

Discussion and Future Work
In our literature review, we identified a wide range of stud-
ies that leveraged mobile apps to assess subject behavior,
provide health-related interventions, and keep subjects en-
gaged. We provide details on 22 such studies in a separate
document due to lack of space3. A subset of such studies
are listed in Table 1. Emu can successfully capture the sce-
narios presented by these studies and reduce code com-
plexity for the developer.

Task Manager

User
Preference
Manager

Event
Database

Presentation
Manager

Sensing
Module

Sensing
Module

Query
Parser

…

Figure 4: System architecture.

Returning to our earlier example of requiring a user to take
a blood pressure measurement after running, an implemen-
tation of the logic that manages notifying users to take mea-
sures at the appropriate time consisted of 20 lines with the
Emu framework. A native Android implementation required
more code (62 lines) and much higher complexity (due to
managing timers).

In this paper we introduced the interface and architecture
of the Emu framework, which allows app developers to con-
cisely and precisely specify when and how to engage their
users. In future work, we will implement Emu and evaluate
its ease of use and performance characteristics.

Acknowledgements
We thank Monowar Hossain, Alethea Marti, Santosh Ku-
mar and our reviewers for their feedback. This research is
funded in part by the National Science Foundation under

3User study papers from literature review: https://goo.gl/QujviY

awards # IIS-1636916 and ACI-1640813, and by the NIH
Center of Excellence for Mobile Sensor Data to Knowledge
under award # 1U54EB020404-01. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
the funding agencies.

REFERENCES
1. Rajeev Alur and David L Dill. 1994. A theory of timed

automata. Theoretical computer science 126, 2 (1994),
183–235.

2. Brian P Bailey, Joseph A Konstan, and John V Carlis.
2001. The Effects of Interruptions on Task
Performance, Annoyance, and Anxiety in the User
Interface.. In Interact, Vol. 1. 593–601.

3. Engineer Bainomugisha, Jorge Vallejos, Coen
De Roover, Andoni Lombide Carreton, and Wolfgang
De Meuter. 2012. Interruptible context-dependent
executions: a fresh look at programming context-aware
applications. In Proc. of the ACM international
symposium on New ideas, new paradigms, and
reflections on programming and software. ACM, 67–84.

4. Athanasios Bamis and Andreas Savvides. 2009. STFL:
a spatio temporal filtering language with applications in
assisted living. In Proc. of the 2nd International
Conference on PErvasive Technologies Related to
Assistive Environments. ACM, 5.



5. Mary Czerwinski, Ran Gilad-Bachrach, Shamsi Iqbal,
and Gloria Mark. 2016. Challenges for designing
notifications for affective computing systems. In Proc. of
the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct. ACM,
1554–1559.

6. James Fogarty, Scott E Hudson, Christopher G
Atkeson, Daniel Avrahami, Jodi Forlizzi, Sara Kiesler,
Johnny C Lee, and Jie Yang. 2005. Predicting human
interruptibility with sensors. ACM Transactions on
Computer-Human Interaction (TOCHI) 12, 1 (2005),
119–146.

7. David H Gustafson, Fiona M McTavish, Ming-Yuan
Chih, Amy K Atwood, Roberta A Johnson, Michael G
Boyle, Michael S Levy, Hilary Driscoll, Steven M
Chisholm, Lisa Dillenburg, and others. 2014. A
smartphone application to support recovery from
alcoholism: a randomized clinical trial. JAMA psychiatry
71, 5 (2014), 566–572.

8. Hong Lu, Jun Yang, Zhigang Liu, Nicholas D Lane,
Tanzeem Choudhury, and Andrew T Campbell. 2010.
The Jigsaw continuous sensing engine for mobile
phone applications. In Proc. of the 8th ACM conference
on embedded networked sensor systems. ACM, 71–84.

9. Abhinav Mehrotra, Robert Hendley, and Mirco
Musolesi. 2016. PrefMiner: mining user’s preferences
for intelligent mobile notification management. In Proc.
of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing. ACM,
1223–1234.

10. Lisa M. Mikesell, Alethea F. Marti, Jennifer R.
GuzmÃąn, Michael McCreary, and Bonnie Zima. In
review. Communicative Uses of mHealth Technology
during Early ADHD Stimulant Medication Titration
In-Office Visits. Journal of Applied Communication
Research (In review).

11. Inbal Nahum-Shani, Shawna N Smith, Bonnie J Spring,
Linda M Collins, Katie Witkiewitz, Ambuj Tewari, and
Susan A Murphy. 2016. Just-in-Time Adaptive
Interventions (JITAIs) in mobile health: key components
and design principles for ongoing health behavior
support. Annals of Behavioral Medicine (2016), 1–17.

12. Felix Naughton, Sarah Hopewell, Neal Lathia, Rik
Schalbroeck, Chloë Brown, Cecilia Mascolo, Andy
McEwen, and Stephen Sutton. 2016. The feasibility of
a context sensing smoking cessation smartphone
application (Q Sense): a mixed methods study. (2016).

13. Tadashi Okoshi, Julian Ramos, Hiroki Nozaki, Jin
Nakazawa, Anind K Dey, and Hideyuki Tokuda. 2015.
Reducing users’ perceived mental effort due to
interruptive notifications in multi-device mobile
environments. In Proc. of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 475–486.

14. Veljko Pejovic and Mirco Musolesi. 2014. InterruptMe:
designing intelligent prompting mechanisms for
pervasive applications. In Proc. of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 897–908.

15. Martin Pielot, Karen Church, and Rodrigo De Oliveira.
2014. An in-situ study of mobile phone notifications. In
Proc. of the 16th international conference on
Human-computer interaction with mobile devices &
services. ACM, 233–242.

16. Saul Shiffman, Arthur A Stone, and Michael R Hufford.
2008. Ecological momentary assessment. Annual
Review of Clinical Psychology 4 (2008), 1–32.

17. Saskia Van Dantzig, Gijs Geleijnse, and Aart Tijmen
van Halteren. 2013. Toward a persuasive mobile
application to reduce sedentary behavior. Personal and
ubiquitous computing 17, 6 (2013), 1237–1246.


	Introduction
	Building a Context-aware Study App
	Challenges in Scheduling Notifications

	Related Work
	Emu: Framework Overview
	Emu Tasks
	Contextual Triggers
	System Architecture

	Discussion and Future Work
	Acknowledgements
	REFERENCES 

