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Abstract
The effect of psychosocial stress on health has been

a central focus area of public health research. However,
progress has been limited due a to lack of wearable sensors
that can provide robust measures of stress in the field. In this
paper, we present a wireless sensor suite called AutoSense
that collects and processes cardiovascular, respiratory, and
thermoregularity measurements that can inform about the
general stress state of test subjects in their natural environ-
ment. AutoSense overcomes several challenges in the de-
sign of wearable sensor systems for use in the field. First,
it is unobtrusively wearable because it integrates six sen-
sors in a small form factor. Second, it demonstrates a low
power design; with a lifetime exceeding ten days while con-
tinuously sampling and transmitting sensor measurements.
Third, sensor measurements are robust to several sources of
errors and confounds inherent in field usage. Fourth, it inte-
grates an ANT radio for low power and integrated quality of
service guarantees, even in crowded environments. The Au-
toSense suite is complemented with a software framework on
a smart phone that processes sensor measurements received
from AutoSense to infer stress and other rich human behav-
iors. AutoSense was used in a 20+ subject real-life scientific
study on stress in both the lab and field, which resulted in the
first model of stress that provides 90% accuracy.
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1 Introduction
Repeated exposures to stress can cause physical illnesses

(e.g., headaches, fatigue, difficulty sleeping, and heart dis-
eases), behavioral issues (e.g., addiction, attention deficit,
and depression), and social issues (e.g., loneliness, anger,
and setbacks in personal and professional relationships) [27].
Novel mobile applications can be developed for stress man-
agement, if stress can be reliably monitored in real-life. Ro-
bust inferencing of stress in the natural environment, how-
ever, has proven extremely challenging due to a lack of un-
obtrusively wearable devices that can provide scientifically
valid measurements of various physiological responses to
stress, from uncontrolled natural environments, as demanded
in health applications [33].

In this paper, we present AutoSense, an unobtrusively
wearable wireless sensor suite that can collect continuous
measurements for inferencing of stress, its causes, and con-
sequences, in the natural environment of individuals. The
selection of sensors, hardware design and algorithms for
managing energy consumption is designed and optimized
from the ground up with the stress inference application in
mind. AutoSense focuses on physiological measures moni-
toring cardiovascular, respiratory, and thermoregulatory sys-
tems, since these systems are modulated by both psychologi-
cally and physically demanding conditions. AutoSense com-
bines six sensors into a conveniently wearable chest band
— two lead Electrocardiogram (ECG) measurement of elec-
trical activity of the heart; respiratory inductive plethysmo-
graph (RIP) band for measurement of relative lung volume
and breathing rate at the rib cage; galvanic skin response
(GSR) between the two ECG electrodes; skin temperature
thermistor under the arm; an ambient temperature sensor,
and a three-axis accelerometer to assess motion artifacts in
the data and provide inferences about the subjects’ physical
activities. The sensors selected in AutoSense are those that
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have been found to be most discriminating [8, 12, 13, 26] for
detecting stress and affect, yet are unobtrusively wearable.

AutoSense integrates all six sensors, bioamplifiers, and
TI MSP430 and nRF24AP2 transceiver from Nordic semi-
conductor onto a 1x2.5 square-inch circuit board. This in-
cludes a 750 mAh battery with built in USB charging and
battery monitoring circuits. We also designed a Bluetooth to
ANT (nRF24AP2) bridge to wirelessly communicate with a
smart phone. Figure 1 shows a picture of the AutoSense sen-
sor suite and the bridge in its custom plastic packaging. All
sensor boards include digital sensor/radio power switches for
duty cycling of the sensors and radio in software.

Figure 1. The AutoSense sensor suite in its packaging.
ECG leads and RIP connectors plug in to the unit on the
side. When worn, the red clip is used to attach the unit
to the (blue) RIP band that goes around the chest. The
Bluetooth to ANT (nRF24AP2) bridge is also shown.

For ease of wearability, the ECG and GSR share a com-
mon electrode. For unobtrusive wearing, the GSR is placed
at the chest rather than its usual placement on fingers or ear-
lobes. For added protection to subjects with health condi-
tions, high impedance circuitry is used to limit current flow,
even in the case of external events (e.g., through physical
breaking of the sensor board or shorting of the battery leads).
For robust respiration measurement in the field, inductive
plethysmography is used instead of a piezoelectric band [7].

AutoSense incorporates several innovations in the design
of sampling and wireless communication. It integrates ANT
(nRF24AP2) radio for low power and quality of service guar-
antee with built-in TDMA. We evaluated the loss in antenna
performance due to proximity to human body, and found a
33% loss of power if the traditional design is used, which is
optimized for free space placement. We determine the best
matching gain to reduce the loss of power to 0.1%. Next,
we determined the frequency range of ANT that is immune
to interference from Wi-Fi (they share the same ISM band).
We also developed appropriate buffer management so that
measurements from all six sensors are sampled at the ap-
propriate frequency and communicated on a single radio, all
managed by a single microcontroller. The short packet struc-
ture of ANT required minimizing header overhead. This re-
quired innovation in the structure of the header so losses in

the wireless channel can be identified and associated with the
appropriate sensor type at the receiver.

AutoSense is complemented with a software framework
on the mobile phone, called FieldStream, that receives mea-
surements from AutoSense, computes a variety of features
from the measurements, and makes behavioral inferences.
These inferences include stress level and other behaviors re-
lated to stress (e.g., activity and conversation).

AutoSense and FieldStream platforms have been used in
a real-life behavioral science lab and field study on 21 hu-
man subjects. The subjects underwent four stress sessions in
the lab and wore AutoSense for 2 full days in field. Measure-
ments obtained from AutoSense enabled the development of
new stress models that provide high accuracy in both lab and
field settings [23]. A survey conducted at the end of the
study shows that participants found AutoSense comfortable
to wear for long hours in the field. AutoSense has also been
used by 30+ subjects in another study where they wore it for
3 days in the field. It is currently being used by 50+ subjects
for scientific studies of stress and addictive behavior where
each subject is wearing it for 1-4 weeks in the field.

Organization. In Section 2, we explain our rationale for
picking the set of sensors for AutoSense. Section 3 describes
the hardware design of sensors, while Section 4 describes the
design of the sampling and communication subsystems. Sec-
tion 5 describes the FieldStream software framework, Sec-
tion 6 describes real-life deployment experience, and Sec-
tion 7 discusses some related works. We conclude the paper
in Section 8 and discuss some future work.

2 Selecting the Set of Sensors for AutoSense
The term stress refers to a broad range of psychological

processes, and, therefore, it is exceedingly difficult to come
up with a single physiological measure that can be used as
a universal marker across distinct stress conditions. The aim
of AutoSense is to monitor psychosocial stress in the daily
life of subjects, in an unobtrusive way, over an extended pe-
riod of time. In previous works [8, 12, 13, 26], physiological
measures of heart-respiration rate and its variability, blood
pressure, eye activity, skin conductivity, muscle activity, and
skin temperature have been found to respond to stress.

The biological approach to monitoring stress focuses on
activation of physiological systems which are known to re-
act to physical and psychological demands. The two pri-
mary systems of stress indicators are the Hypothalamic-
pituitary-adrenocortical axis (HPA) and the Sympathetic-
adrenal medullary system (SAM). The HPA axis deals with
hormonal responses to excessive stimulation of the adrenal
cortex, which results in secretion of cortisol hormone. This
is part of of the human adaptive mechanism for maintaining
function under changing environmental conditions. Since
HPA axis plays a central role in the body’s psychobiological
stress response, cortisol measurements are used heavily in
stress research. While ambulatory methods of cortisol mea-
surement exists in the form of saliva, blood, or urine sam-
pling at regular intervals, they are not suitable for continuous
monitoring of stress [21] due to subject burden.

SAM, on the other hand, deals with the autonomic ner-
vous system (ANS) response to changing environmental de-
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mands. The ANS consists of two subsystems — the sym-
pathetic system (SS), associated with energy mobilization,
and the parasympathetic system (PS), associated with vege-
tative and restorative functions. These two subsystems (act-
ing like gas and break pedals in a car), keep the cardiac
functions in dynamic balance. In particular, heart rate is
under the control of the ANS such that relative increases
in sympathetic activity leads to increases in the heart rate
and relative increases in parasympathetic activity are associ-
ated with decreases in heart rate [30]. Therefore, the anal-
ysis of time intervals between heartbeats, referred as heart
rate variability (HRV) analysis, provides information on rel-
ative activation of SS and PS. Typically, HRV analysis re-
lies on frequency domain analysis of the interbeat time in-
terval series due to the known time constants of SS and PS.
Sympathetic system regulation can only occur at slow time
scales and therefore its effect on HRV rolls-off at 0.15 Hz,
whereas parasympathetic influences can occur at faster time
scales up to 0.4 Hz. Therefore, high-frequency HRV (0.15-
0.4 Hz) represents pure parasympathetic influences whereas
low frequency HRV (0.04-0.15 Hz) has a mixture of sym-
pathetic and parasympathetic influences. Monitoring HRV
energy in these two bands can inform on SS/PS balance and
consequently about body’s stress response. HRV analysis re-
quires interbeat time intervals. Thus,, commonly used heart
rate monitors which average heart rate over tens of seconds
are not sufficient. AutoSense employs digital filtered ECG
waveforms for accurate analysis of HRV. However, the ECG
sensor by itself is not suitable for conducting stress studies
that examine ANS cardiac control across subjects. This is
mainly because HF-HRV is also affected by respiration rate,
tidal volume (displaced air during respiration) and posture
(supine/standing). To control for these effects, AutoSense
includes a respiration band to measure respiration rate and
tidal volume as well as a 3-axis accelerometer for detection
of body orientation and activity. In addition, the respira-
tion band and accelerometer is used for detecting speech and
intensive physical activity episodes where the link between
HRV and stress response is harder to assess.

Finally, AutoSense includes skin conductance, body and
ambient temperature to monitor activation of thermoregula-
tory and nervous systems of the body. Although the primary
function of endocrine sweat glands is cooling, those located
on the palmar and planter surfaces are involved in grasping
behavior. As a result, these surfaces are more responsive to
emotional stimuli, associated with the “fight or flight” re-
flex [2]. These sensors provide information that can be used
in monitoring the flight-or-fight response of the nervous sys-
tem, after factoring the effects of body heat flow. In sum-
mary, AutoSense provides a carefully designed sensor suite
for precise measurement and analysis of ANS stress response
that can be worn unobtrusively in the natural environment for
long periods of time.

3 AutoSense Sensor System —
Hardware Design

In this section, we describe the hardware design of the
AutoSense sensor suite and its evaluation against commer-
cially available units. AutoSense embodies the following

six sensors onto a mote (i.e., TI MSP430) hardware — Two
Lead electrocardiogram (ECG) for measurement of electric-
ity of the heart, Respiratory inductance plethysmography
(RIP) sensor integrated into a chest band for relative lung
volume and breathing rate at rib cage, Galvanic skin re-
sponse (GSR) under the band via the ECG electrodes, Skin
temperature sensor placed under the band for monitoring
the thermoregulatory response to stress, Ambient tempera-
ture sensor embedded into the mote hardware for heat flow
calculations in tandem with the skin temperature sensor, and
3-axis accelerometer for motion sensing, used to assess mo-
tion artifacts of the data and provide general activity and rest
information for the subjects. The sampling frequencies of
these sensors are described in Section 4.5.1. The sensor node
processes ECG and respiration band signals to extract beat-
to-beat heartrate information and to filter out noise. This en-
ables a continuous detailed study of heart rate variability (or
more precisely variability of individual cardiac periods) to
assess changes in autonomic control of cardiac functions.

3.1 Respiratory Sensing
Respiration rate has been linked to various stressors in

laboratory studies. However, there is no direct non-invasive
way of measuring respiration rate. The most accurate mea-
surement of respiratory effort is through esophageal manom-
etry. In this method, a catheter is inserted in the esophagus
to measure air pressure directly. A nasal thermistor can in-
form about the respiration rate but not the respiration effort.
Impedance plethysmography methods pass a weak alternat-
ing electric current through two or more electrodes and mea-
sure impedance. Changes in this impedance can be linked
to thoracic and abdominal movement during breathing. The
frequency range of the alternating current source have to be
chosen carefully not to interfere with pacemakers, defibrilla-
tors and other sensors, such as ECG and GSR. These meth-
ods are obtrusive and not suitable for field studies where the
subjects have to continue with their daily routine. Our ap-
proach to respiratory sensing uses an elastic band to measure
relative lung volume through sensing changes in the tension
as the chest expands or contracts. This surrogate measure to
respiratory effort is known as plethysmography. We eval-
uated two alternative approaches for plethysmography —
piezoelectric sensors and inductance-based sensors.

Piezoelectric sensors are the most common method in use
and rely on a piezoelectric crystal placed where the two ends
of the band connect. The crystal generates a voltage when
compressed or stretched, correlated with chest wall displace-
ment. While inexpensive and simple to integrate into a mote
based system, in our experiments, we found the piezo-based
method was prone to the so-called “trapping” artifact. While
the subject engages activities in their daily life, often the par-
ticular portion of the band where the sensor is placed can
become trapped which can significantly under or overesti-
mate the tension along the circumference. The artifact is
most troublesome when the person is laying down or lean-
ing against furniture. In addition, often a change in body
position leads to a different steady state load on the piezo
sensor, causing sudden jumps in respiratory readings.

Respiratory inductance plethysmography (RIP) uses a
conductive thread that is sewn in a zigzag fashion to the elas-
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tic band. An alternating current source is applied to the re-
sulting loop of wire, which, in turn, generates a magnetic
field that opposes the current whose strength is proportional
to the area enclosed by the wire (according to Lenz’s law).
The ratio of the magnetic flux to the current is called self-
inductance. Therefore, changes to the chest circumference
can be measured by measuring the changes to the self in-
ductance of the band. The inductance measurement depends
purely on the geometry of the band and is not related to the
tension in the band. As a result, the measurement is not
prone to the trapping of the band and associated artifacts
due to changes in tension. There are many commercially
available bands with embedded wire threads. These bands
are often sold with propriety electronic boards that measure
the inductance and produce a voltage that makes them com-
patible with recorders intended to be used with piezoelectric
sensors. These conversion boards are not suitable for inte-
gration with the AutoSense system due to their size, power
consumption, and cost.

We designed a new sensor board for RIP bands for low
power sensing and direct integration with the mote hardware.
The band is used in series with a known inductor to set the
frequency of a Colpitt’s oscillator (nominally 400 kHz in
our circuit). Then, the output of the oscillator is shifted by
adding a DC bias and fed to a zero-crossing counter. The
zero crossing counter output is integrated and low-pass fil-
tered before an instrumentation amplifier that amplifies and
subtracts the long term baseline before the Analog-to-Digital
sampling. Figure 2 shows the respiratory signal obtained
through the RIP sensor, with features of respiration marked.
Although the morphology of the respiratory effort signal is
less well known than for ECG, several studies have shown
the potentially rich information contained in the respiratory
effort signal. Various features obtained from respiration (see
Figure 2) have been shown to be good markers of speak-
ing [18], stress [8], and emotion [12, 13, 26]. These works,
however, were conducted in supervised laboratory condi-
tions, since a RIP sensor that can provide good quality mea-
surements in the field was unavailable. Development of our
RIP sensor enables collection of respiration measurements in
the natural environment and inferring the conversation status
of a subject in real-time on a mobile phone with > 87% ac-
curacy [24].

Figure 2. Features computed over respiration measure-
ments that are used in detecting stress and conversation.

3.2 Integrated ECG and GSR Sensing
Electrocardiography (ECG) sensing is the primary

method for assessing cardiovascular activity in subjects. The
sinoatrial node produces electrical impulses to stimulate
heart muscles and control the pumping action of the heart.
ECG measures this electrical activity through electrodes ap-
plied to the skin. In particular, electrodes placed on different
sides of the heart measure activity at different parts of the
heart. A two lead ECG informs about the overall rhythm of
the heart, providing precise timing information of the heart
beat intervals. A multiple lead ECG sensor measures poten-
tials across different vectors across the heart and can indicate
problems or weakness in particular parts of the heart muscle.

In AutoSense, we are interested in the timing of the heart
beats and, therefore, use the standard two-lead configuration
measuring potential from left to right. The typical poten-
tial across the heart is a small magnitude on the order of
1mV which must be amplified by a factor of 100 before
the sampling circuit. The electric field interference from
power lines and other electrical equipment can cause sig-
nals of similar magnitude unless differential amplifiers with
high common-mode rejection is employed. A second prob-
lem with two-lead systems is baseline wander since the third
grounding leg electrode is missing. In addition, electrode-
skin impedances can vary between the two electrodes, lead-
ing to source a impedance unbalance, which produces differ-
ential mode voltage that will be amplified by the differential
amplifier. Therefore, the baseline needs to be extracted and
abstracted from the main signal to provide the maximum dy-
namic range of the ADC. As discussed next, this baseline
correction circuit provides a way to integrate galvanic skin
response sensing into the same electrode through applying
a fixed, known differential between the electrodes. Finally,
appropriate analog filtering must be employed to attenuate
high frequency noise sources and to prevent aliasing in the
analog-to-digital sampling stage.

Galvanic Skin Response (GSR) measurements are con-
ducted by applying a known DC or AC potential across two
electrodes and measuring resistance across the terminals.
Simple bridge circuits are used to measure variations from
a nominal resistor value. This simple sensor usually requires
an extra set of electrodes that are placed with the sensor. To
maximize comfort and simplify the procedure for wearing
the band, we integrated ECG and GSR sensors onto the same
electrode. In addition to reducing the required number of
electrodes, GSR readings, in turn, provide valuable informa-
tion that is used in ECG signal processing, since they inform
about the long term signal levels. A differential voltage bias
is applied to the two electrodes through a bridge circuit. The
GSR circuit measures the potential on the electrodes using
a single stage differential amplifier. The ECG circuit uses a
high impedance amplifier to measure the variation across the
electrodes without loading the circuit. A second instrumen-
tation amplifier with baseline correction amplifies the signal
by 5. After baseline correction and centering, a final ampli-
fier applies a gain of 100 and performs low pass filtering with
a cutoff of 60 Hz.
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3.3 Temperature and Accelerometer Sensors
The AutoSense system measures relevant simple skin re-

sponses. The skin conductance is directly proportional to
skin moisture content correlated with stress in many stud-
ies [8,12]. The skin temperature gradient has been also been
suggested as an indicator of stress [14] and also indicates the
environmental conditions for the subject. AutoSense motes
have two temperature sensors to measure body and ambient
temperature. For body temperature, a medical-grade glass-
bead thermistor is used with a simple bridge circuit to mea-
sure body surface temperature. For the ambient tempera-
ture, we use a low power analog temperature sensor for mea-
suring ambient temperature on the mote surface. We use
the ADXL335 three-axis accelerometer from Analog devices
with simple RC low pass filters on each channel to measure
acceleration using independent ADC channels.

3.4 Comparison of the ECG and RIP sensor
measurements with Commercial Sensors

To compare the ECG and RIP sensors of AutoSense with
commercially available sensors (which are intended for use
in controlled settings), we collected data simultaneously with
commercially available sensors across various activity pro-
files (sitting, walking, running) on a treadmill. For ECG,
we used the Garmin Forerunner 305, a GPS enabled watch
that monitors heart rate via a wireless chest strap. The watch
was worn around the wrist of the subject, while the chest
strap was fitted around the subject’s chest at the height of
the sternum. The AutoSense sensor suite was attached to the
RIP band that the subject wore slightly above the Garmin
strap. The data was then transmitted via a Bluetooth bridge
to a phone kept with the subject throughout the test. The
phone stored this data for later analysis. We collected heart
rate data over 200 minutes over multiple sessions. Figure 3
shows measurements from both of these ECG sensors for a
typical session.

For the respiration, we used the commercially available
RIP sensor from Sleepsense and a similar experimental set
up as for ECG. Sleepsense’s inductive effort sensor requires
an external ADC unit and is geared towards sleep research.
The output of the Sleepsense sensor utilizes a heavier low
pass filtering circuit to provide signals suitable for sleep re-
searchers. To maximize correlation to the Sleepsense sig-
nals, we low-pass filtered AutoSense RIP output with a dig-
ital 4 Hz filter and calculated a linear fit model for the raw
respiration signals provided by the two sensors. For each ac-
tivity profile, we evaluated goodness of fit using the R2 coef-
ficient. As shown in Table 1, we get a good correlation with
the commercial sensors for various activity profiles, validat-
ing the measurements obtained from AutoSense sensors.

4 Sampling and Wireless Communication
The main function of the AutoSense sensors is to sam-

ple and transmit physiological data streams to the user’s mo-
bile phone. The physiological signals are sampled at sam-
pling frequencies that are determined by the frequency con-
tent of each signal, resulting in fixed rate downlink traffic.
It is well known that for low-power radios utilized in sen-
sor node design, operating the receiver and the transmitter
sections consume approximately the same power. Conse-
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Figure 3. Example Validation Session for Heart Rate

Activity Garmin-AutoSense Sleepsense-AutoSense

Heart Rate RIP signal

Sitting 0.93 0.89

Walking 0.90 0.86

Run (3.0 mph) 0.91 0.82

Run (5.0 mph) 0.86 0.79

Table 1. Goodness of Fit (using the R2 coefficient) for
AutoSense and Garmin/SleepSense Signals

quently, power cycling the receiver is a widely adopted strat-
egy for reducing radio power consumption. For fixed rate
traffic, Time Division Multiple Access (TDMA) provides a
means to power-cycle both the receiver and the transmitter
in a network. TDMA also helps maintain the data rate and
transmission schedule of existing sensors when additional
sensors are added on to the body, since they can be allo-
cated different time slots. Moreover, in user studies, several
subjects (who may be students at a university) may spend
significant time in close vicinity of each other (such as when
taking a class together). TDMA is able to scale with minimal
overhead per packet in such crowding situations by provid-
ing separation along channels and time slots.

Radio Selection. Although software solutions for TDMA
can be implemented with 802.15.4 radios, we selected
the Nordic Semiconductor nRF24AP8 transceiver chip for
sensor data transmissions and back-channel control mes-
sages. Nordic Semiconductor nRF24AP8 is a bidirectional
radio transceiver with built in firmware implementing the
ANT protocol developed by Dynastream Innovations Inc.
nRF24AP8 operates in the 2.4 GHz ISM band. The ANT
protocol provides a TDMA based Channel Access scheme
with an optional network layer supporting point-to-point,
star, tree, and mesh network topologies [1]. The raw data rate
of the radio is 1 Mbit/s. The packet payload size is optimized
for slow data rate sensors at short packets of 8 bytes/packet.
Neighbor discovery, channel allocation, and the TDMA pro-
tocol is handled by the transceiver chip, allowing coexistence
with other ANT enabled sensors. Currently, the ANT plat-
form is primarily adapted for low-rate devices such as heart
rate monitors, wrist watches, and bicycle computers. Au-
toSense provides a data stream that is at a higher rate than
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most existing devices adopting ANT technology, with an ap-
proximate data rate of 1.8 kbits/s.
Bluetooth to ANT Bridge. ANT radios are available on
very few smart phones; even fewer expose it to develop-
ers. Until they become widely available, additional effort is
needed to facilitate wireless communication between ANT
sensors and smart phones. One could use nRF24AP8-based
dongles that plug in to a phone’s USB port. But, this in-
creases the form factor of the phone. Alternatively, Blue-
tooth radio can be integrated onto a sensor node itself [15],
but Bluetooth radio can drain the battery that is shared with
the sensors. Low-power bluetooth, when available widely,
can help address this issue.

To accommodate a wide variety of smart phones avail-
able today, we have added a bridge node in between the
wearable sensors and the mobile device as in [6]. A bridge
node can help pair up any mobile phone with any ANT sen-
sor without introducing strong coupling requirements.

In our design, we connect the BlueTooth serial module
(BlueRadio-CR46AR) to the UART1 lines of the MSP430.
We minimize packet loss using a queueing mechanism on the
bridge node, which buffers the data from the sensors before
sending it out on the Bluetooth link. By using a moderate
buffer size of 12, we are able to keep the packet loss rate to
< 2% on the phone. We also include a digital switch on the
bridge to enable duty cycling of the Bluetooth radio.

In the following, we present detailed evaluation of Au-
toSense’s power consumption profile as a function of sensor
sampling rate, discuss antenna optimization for maximizing
reliability of the wireless link when the sensor is placed close
to the body, channel selection to minimize cross-technology
interference from co-habiting wireless networks (Bluetooth,
Wifi, Zigbee), and optimization of sensor sampling and wire-
less communication.

4.1 Obtaining Precise Energy Measurements
Modeling and estimating power consumption of wire-

less sensor nodes requires 1) precise current measurements
in various modes of operation, and 2) extrapolation using a
usage model to estimate the consumption profile of multi-
ple protocols and sensing applications [28, 31]. Construct-
ing a precise current consumption profile for a low-power,
tightly integrated system such as AutoSense is a challenging
task due to numerous software/hardware components affect-
ing the current consumption across time. If digital switches
are available across each hardware component, then one can
enumerate all potential modes of operation and make mea-
surements for alternatively powering each subcircuit using
specialized hardware as in [9]. Here, we follow an alternative
option where measurements are made on multiple channels
at various points of the board simultaneously. The subcom-
ponent current consumption is then calculated by differenc-
ing across time and channel.

In addition, conducting current measurements at μA res-
olution without loading the AutoSense circuit is not achiev-
able with the standard method of inserting a shunt resistor
and reading the voltage across it using an oscilloscope. To
characterize the power consumption of the AutoSense sensor
circuits and radio transceiver, we built a custom current mea-
surement board using two Texas Instruments INA139 high

side current shunt monitor chips and 10 Ω SMT 1% current
sense resistors. A dual channel configuration was made to
allow for two simultaneous current measurements (e.g., total
sensor node current and radio current) with an output gain of
100. Our design provides higher reliability and quality con-
trol as compared to a simple sense resistor and probe mea-
surement. The precision of the power measurement board is
estimated to be +/- 10 μA.

4.2 Energy Profiling
Radio Transceiver. The MSP430 microcontroller unit
(MCU) communicates with the nRF24AP2 through the SPI
link to exchange the transmit and receive packets and con-
trol messages. Typically transceiver data sheets only re-
port peak current power consumption for transmission and
do not include current consumption during power cycling
the radio and pulling the data in and out of the transceiver.
With the newer transceiver designs, the RF power consump-
tion during transmission is reduced dramatically, making the
current consumption overhead for power-cycling and MCU
serial communication non-negligible. We observe that al-
though transmission of an 8 byte packet takes 150 μs, the
setup time is significantly longer, and proper power con-
sumption figures should include radio/MCU communica-
tion. Using the dual channel current measurement board,
we conducted current measurements for the nRF24AP2
and nRF24AP2+MCU. Figure 4 shows the transmit power
consumption trace for one packet. The peak power is
approximately 15 mA. Therefore, the theoretically mini-
mum transmit power consumption for a single packet is
15 mA*150 μs=2.25 μAs. The actual current consump-
tion, however, includes the setup and release time of the
radio which lasts 6.5ms and is given by the area under the
current curve for nRF24AP2+MCU. It is 23.6 μAs (or,
70.8 μJ) per packet in our implementation; the per packet
current consumption of just the nRF24AP2 transceiver is
18.9 μAsec (or, 56.7 μJ) per packet, which accounts for
80% of the power consumption. The energy efficiency
of nRF24AP2 radio for our implementation is, therefore,
70.8 μJ/64 bits=1106 nJ/bit. (Four byte header that tags de-
vice and message type on each message is not counted as
information bits). To compare this number to commercially
available 802.15.4 transceivers, we conducted current mea-
surements with the TelosB platform and found its efficiency
to be 816 nJ/bit. While the overhead of small packet size of
nRF24AP2 transceiver results in higher energy consumption
per information bit, it provides TDMA protocol implemen-
tation with ultra low power standby current of 3 μA. Next,
we combine this packet level measurement with sensor data
rates to estimate the total lifetime of the AutoSense Mote for
various data rates.
Sensor Boards. To characterize power consumption of the
AutoSense sensors, we measured power consumption by en-
abling and disabling various components of the sensor sys-
tem. We used the oscilloscope traces to determine the time
duration of various tasks. The sensor chains have the follow-
ing current consumption profiles — 210 μA for ECG+GSR
and 1.48 mA for RIP. In addition, body and ambient temper-
ature sensing consume 150 μA and the 3-axis accelerometer
consumes 335 μA in steady state. The low sampling rate and
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Figure 4. Current consumption per packet packet for
Transceiver+MCU (red) and Transceiver Only (green)
modes.

fast time constants of these sensors, however, enable power
cycling on a per sample basis, rendering their contribution to
power consumption to 60 μA. The above figures are for the
analog sensor circuits only. Accurate lifetime calculations
require consideration of MCU current consumption due to
ADC sampling, conversion buffer access, and digital filter-
ing. To simplify the power calculations, we consider two
main power modes for the MCU — MCU executing back-
ground jobs waiting for sampling timer events μC(low), and
MCU executing sampling and digital filtering μC(high). Ta-
ble 2 summarizes the power consumption measurements.

Operation Current

Consumption

Sensors (I1) 1.75 mA

Sensors+μC(Low) (I2) 2.05 mA

Sensors+μC(High) (I3) 3.82 mA

RadioTx (Average)(I4) 3.63 mA

Table 2. Power Consumption for AutoSense

The radio setup and transmission last 6.5 ms for a 5 sam-
ple packet, whereas sampling and associated digital filtering
takes, on average, 1 ms to execute. We can estimate the total
current consumption as a function of sample rate fs as:

Itotal = 0.001 fsI3 +(1−0.001 fs)I2 +0.0065 fs/5I4

On a 750 mAh battery, the total lifetime in days is given by
Tlife = 750/(24× Itotal). Figure 5 shows the lifetime of Au-
toSense as a function of the overall sampling frequency. The
circle denotes the operating point adopted in real-life deploy-
ments, which corresponds to 132 samples/sec (see Section
4.5.1), and results in an expected lifetime of 10.75 days.

4.3 Antenna Optimization for Body Sensors
AutoSense sensor motes use ceramic multilayer chip an-

tennas from TDK with the reference tuning circuit from
Nordic Semiconductor on our 4 layer board. Although the
reference design provides nominal values for the tuning cir-
cuit, the antenna designed for free-space has to be optimized
for placement close to the body. The human body affects
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Figure 5. Lifetime of AutoSense chestband mote as a
function of sampling frequency

the antenna performance in two ways. First, the body’s wa-
ter content causes power loss in both receive and transmit
modes. Second, the body acts as a ground plane, causing
detuning of the antenna. The effect of the body on wireless
propagation has been studied widely, and new antenna de-
signs have been proposed for on body applications [3, 34].
Here, we evaluate the detuning effect and report the mag-
nitude of performance degradation for commercial off-the-
shelf chip antennas in close proximity to the body, variation
of this degradation with distance from the body, and the ef-
fect of simple tuning circuits in recovering performance.

To ensure maximum efficiency in power transfer from
the radio to the antenna, the input impedance of the radio
should be matched to the output impedance of the transceiver
set at 50 Ω. If the antenna impedance is mismatched, a
portion of the incident wave to the antenna is reflected re-
sulting in reduction of the transmitted power. The return
loss (RL) measurements with a network analyzer provides
the ratio of the power of the incident wave to the reflected
wave for the antenna. A more practical measure of perfor-
mance, the mismatch loss (ML), provides the reduction in
the transmitted and/or received power due to mismatch of
the antenna impedance. ML can be calculated from RL us-

ing ML = 10log(1− 10RL/10). For optimizing antenna per-
formance, the antenna measurements should be conducted at
the same configuration (i.e., plastic casing, closeness to body
etc.) of the intended deployment.

We performed return loss measurements for the ceramic
chip antennas using the Agilent N5242A PNA-X network
analyzer and a custom semi-rigid coax probe soldered to the
board. The experimental setup is shown in Figure 6. The
antenna return loss is measured when the PCB is placed at
various distances from the body. The results are given in
Figure 7. First, we observe that detuning is a function of the
space between the PCB and the body. Therefore, optimiza-
tion of the antenna should be conducted for the particular
deployment configuration. Second, the result shows that the
detuning becomes severe if no space exists between the PCB
and the body. Therefore, we chose to include a small 25 mm
spacing in our casing to temper the body effects.

We conducted a second set of measurements with the en-
closure in place while the subject was wearing the sensors.

280



Based on these measurements, we implemented a matching
circuit to bring the tuned frequency to 2.45 GHz. The results
with and without the matching circuit are shown in Figure 8.
We observe that without a proper tuning circuit, the return
loss is −4.8dB, leading to 33.1% loss of transmission power.
Since the loss will occur on both the transmit and receive
ends this will lead to a −3.5dB power loss, resulting in a
35% decrease of the reliable communication range. In com-
parison, with input matching, the return loss is reduced to
−20dB across the ISM band, with only −0.1dB power loss
compared to ideal.

Figure 6. Antenna measurement with custom co-ax
probe

Figure 7. Return Loss as a function of separation from
Human Body

Antenna

Battery

ChestBand Clip

HUMAN BODY

Figure 8. Custom enclosure design with antenna spacing

4.4 Using Empirical Study for Frequency
Channel Selection

It has been observed that since 802.11 (WiFi), Bluetooth,
and 802.15.4 (Zigbee) share the 2.4GHz ISM band, there is
significant interference to 802.15.4 from WiFi, and therefore,
the channel should be selected carefully to avoid high packet
losses on the lower power radio due to interference from
the higher power 802.11 radio [29]. This is the case with
nRF24AP2 radio as well, since it shares the same 2.4GHz
ISM band. In this section, we present empirical measure-
ments of the packet delivery performance of the nRF24AP2
transceiver, which we use to select the appropriate frequency
channel. The nRF24AP2 transceiver provides 125 frequency

Figure 9. Antenna measurement of the final design with
and without input matching. Return Loss (Left), Com-
plex Reflection Coefficient in Smith Chart Form (Right)

channels from 2400 MHz to 2524 MHz, separated by 1 MHz.
We measured the interference from the eleven 802.11b chan-
nels to the 125 channels of our radio. The AutoSense chest-
band mote and the bridge mote were separated by 2 feet
and a laptop was placed 6 feet from the two motes com-
municating with an access point, separated by a wall at 6
feet distance. For each 802.11b-nRF24AP2 channel pair, we
recorded packet reception performance using 1,000 packets
under two scenarios: (a) Background traffic to and from the
access point encountered in a typical campus environment
(b) Sustained data transfer to the laptop of a large file through
FTP. The results are shown in Figure 10. We observe that un-
der heavy traffic, the packet loss rate can be as high as 80%,
if the channels overlap. For the channels that are outside
the 802.11b band (2480-2524 MHz), the packet loss rate is
low, at an average of 0.57%. These results guided us to use
the frequency band, providing us with 45 individual usable
channels. This is in addition to the TDMA diversity offered
on each channel, each of which can support tens of coex-
isting radios. Consequently, TDMA diversity together with
channel diversity provide sufficient scalability.

Since the loss rate is quite low on the 45 selected chan-
nels, we decided not to adopt the ACK handshake for re-
transmissions and simply mark the small percentage of miss-
ing data packets as non-valid data at the receiver end. This
allows missing data to be handled appropriately by higher
layers of inference algorithms.

4.5 Optimizing Sampling and Communica-
tion

As described earlier, the main driver of power consump-
tion is the number of samples collected and passed over to
the wireless link. AutoSense motes currently support two
modes of sampling and processing, each optimized for the
fixed rate link provided by the nRF24AP2 chipset — stream-
ing mode and feature mode.

4.5.1 Streaming Mode
In the streaming mode, the sensor signals are first digi-

tized at a sampling rate exceeding the analog bandwidth for
each channel. We use the following sampling rates for the
different biosignals — 128 Hz for ECG, 21.3 Hz for RIP,
10.7 Hz for GSR and Accelerometers, 2 Hz for body temper-
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Figure 10. Packet Loss Rate for all channel pairs ob-
served by the nRF24AP2 receiver through 802.11b traffic
(a) Background and (b) Sustained data transfer

ature, and 1 Hz for ambient temperature and battery power
sensors. The ECG is sampled at a high rate since location
of R-peaks must be captured. Next, the ECG signal is fed to
a digital low pass filter for the bandwidth to half with sec-
ond order stable Infinite Impulse Response (IIR) filters im-
plemented with fixed point arithmetic. The resulting ECG
filter output is resampled at half the sampling rate, resulting
in an output rate of 64 Hz. The aggregate output from all
sensors is 132 samples/s.

The nRF24AP2 radio transceiver is configured to send
data at a fixed rate using a TDMA scheme with a payload
of 8 bytes/packet. Using 12 bits/sample and a 4 bit channel
header, this provides 5 sensor samples per packet. We chose
an operating point of 28 packets/sec to surpass the minimum
required rate of 26.4 packets. This corresponds to an ap-
proximate output data rate of 1.8 Kbits/sec, which is less
than 1/10th of the maximum allowed rate of 20kbits/s for
the nRF24AP2. The nRF24AP2 expects buffers to be ready
for each transmission slot at the given fixed rate, and data
transmissions occur at the assigned timeslot irrespective of
whether a packet has been handed to the radio transceiver.
To maximize the efficiency of the TDMA protocol, we de-
veloped a fixed rate TDMA buffer manager. The TDMA
buffer manager, whose basic structure is shown in Figure 11,
employs two data buffers — regular sampled data buffers for

ECG, GSR, RIP. and accelerometer channels, and random
sampled data buffers for body temperature, ambient tem-
perature, battery power channels and system diagnostic data
(buffer depths, sensor configurations, time synchronization).
At the end of each packet transmission, the buffer manager
fills the output buffer from the regular sampled data buffer
if 5 consecutive samples are available from any of the sen-
sor channels. Otherwise, the buffer manager fills the buffer
from the random sampled data buffer. This buffer manage-
ment is a simple scheme that provides all the available time
slots with valid data, while allowing asynchronous indepen-
dent operation of the sensor sampling and radio messages.

Regular Sampled
Data Buffer

Random Sampled
Data Buffer

ECG, RIP, 
GSR, ACCEL

TempBody/Amb
BatPow, TimeSync

TDMA
Buffer

Manager
nRF24AP2

Guaranteed
Rate

160 samples/sec

Average Rate
10 samples/sec

Fixed
Rate

34 packets/sec

Figure 11. TDMA Buffer Manager

To preserve battery power, the TDMA scheme imple-
mented by nRF24AP2 shuts down the radio between succes-
sive transmissions of data packets. Sampling, digital filter-
ing, and resampling take 1.8ms per output sample, on aver-
age, at a 4 MHz clock frequency, occupying 58% of available
CPU cycles for the AutoSense mote.

4.5.2 Feature Mode
Energy consumption can be further reduced if additional

computation is performed locally on the mote. Providing the
minimum rate of 64 Hz from ECG requires 12.8 packets/sec,
making it the most significant source of power consumption
due to frequent radio transmissions. Providing the preferred
sampling rate for HRV at 512Hz will reduce the battery life
drastically and preclude the possibility of continuous stream-
ing of ECG signal with high sampling rate to a mobile com-
puting platform for analysis. Instead, in the feature mode,
we provide a distributed computation method for comput-
ing Heart Rate Variability (HRV) measures between the Au-
toSense Mote and a mobile computing platform. The mo-
bile computing platform increases the beat detection resolu-
tion while reducing the required communication drastically.
Figure 12 provides a flow diagram for the distributed HRV

ECG
Amplifier with 
Adaptive Gain

Hardware 
Filters (HP, LP)

A/D Sampling
QRS 

Detection

Lomb 
Periodogram

Spectrum
Analysis

StressWare Mote

Cell Phone

Processing for 
FP and FN

Figure 12. Distributed HRV computation

algorithm. The algorithm has three main components: 1) Lo-
cal computation of potential beat locations with associated

282



confidence measures at the heart rate monitor, 2) Smoothing
and interpolation using Gaussian Process Regression for la-
beling True and False Positives, and 3) Spectrum Calculation
by Lomb-Periodogram on a mobile platform.

Potential R-wave locations are computed locally at the
ECG Mote using a modified version of the QRS detection
algorithm proposed by Hamilton-Tompkins [10]. The algo-
rithm applies a series of filters to the data, followed by squar-
ing and moving window integration. There are two adap-
tively running thresholds, based on signal and noise ampli-
tude levels, for adapting to different ECG morphologies. The
estimated position of beat events are periodically transmitted
wirelessly to a mobile device. For a nominal heart beat fre-
quency of 1 beat/sec, the beat locations require 13.2 packets
per minute, assuming 10% false positive rate. This provides
58:1 reduction in communication bandwidth over the 12.8
packets/sec rate of the streaming mode. In the mobile de-
vice, an outlier removal algorithm based on peak-to-peak in-
terval, normalized by mean and standard deviation over each
minute, is used to reject too long or too short intervals.

4.6 Identifying Samples Lost in ANT Wireless
Transmission

The short packet structure of 8 bytes supported by
nRF24AP2 necessitates minimizing the overhead informa-
tion sent as a header. The sensor node ID and sensor types
are supported as part of the TDMA packet structure and does
not count towards the payload of 8 bytes. However, sequence
numbers are not included in the packet, which can be used
to identify which samples were lost in the wireless transmis-
sion. Therefore, an explicit protocol needs to be agreed upon
by the transmitter and receiver to be able to identify when
data is lost in wireless transmission and determine the sensor
type to which it corresponds to. Because of the fixed rate, the
receiver is able to perceive that a packet was lost whenever
no packet was received in the previously agreed upon times-
lot. However, without any further knowledge, the receiver
is not able to decipher the sensor channel that the missing
packet corresponds to. To address this issue, we have chosen
a fixed sampling/transmission schedule for the sensors that is
based on a 4 bit sensor sampling counter, and we use a packet
structure where five samples of 12 bits are augmented with
this 4 bit counter to fill the 8 byte packets. Using the sen-
sor sampling counter received before and after a sequence of
missed packets, the receiver can determine how many of the
missed packets were from the regularly sampled data buffer,
and which sensor channels they correspond to. The bridge
marks these samples as missing in the received sensor data
buffers, so that missing data can be appropriately handled by
higher level inference algorithms on a mobile device.

5 FieldStream: A Software Framework on
Smart Phones

AutoSense sends sensor measurements to an Android
mobile phone via a Bluetooth-to-ANT bridge. On the phone,
the FieldStream software framework robustly collects sen-
sor measurements, processes these measurements to produce
inferences about the user (e.g., speaking from respiration,
physical activity from accelerometers, and stress from ECG
and respiration), and then shares these measurements and in-

ferences with subscribing external applications on the phone
and logs them to a local database. Inferences are produced
in real-time by the device (approximately 1-2 minutes after
sensor measurements are collected, depending on the type of
inference), allowing smart-phone applications to be respon-
sive to changes in the body. For instance, self-report can be
solicited from participants in a scientific study, if they are
detected to be stressed.

5.1 Architecture
Figure 13 depicts how data flows through the Field-

Stream framework to produce inferences. First, the An-
droid OS transports the raw byte stream from the bridge to
the framework’s Network Layer via the Android Bluetooth
API. The Network Layer packetizes the raw byte stream
and then demultiplexes the packets, identifying which sen-
sor each packet corresponds to. Next, packets are passed to
the Windowing Layer where they are added to an abstract
sensor, a software abstraction of a sensor that buffers sensor
data into windows. A window is a buffer of sensor data cor-
responding to a contiguous block of time, e.g., one minute.
When a minute’s worth of data is buffered in the window, the
window is passed to the Features Layer.

The Features Layer calculates descriptors or features of
the window using the Feature Statistics Module and Vir-
tual Sensors. The feature statistics module computes basic
statistics of a window, such as mean, variance, heart rate, and
respiration rate. Virtual Sensors compute windows of inter-
mediate features from other windows. For example, a virtual
sensor could produce a window of R-peak locations from a
window of ECG data, which are then further processed by
the feature statistics module into heart rate. Once feature
statistics are computed, they are passed on to the Inferenc-
ing Layer, where inferences are computed from the features.

Communication between the various layers is provided
by a set of buses that follow the Observer design pattern [5]:
a Mote Bus that passes packets from the Network Layer to
the Windowing Layer; a Window Bus that passes windows
from the Windowing Layer to the Features Layer; a Feature
Bus that passes feature statistics from the Features Layer to
the Inferencing Layer; and a Context Bus that passes context
inferences to external applications. A logger listens on all
the buses, and logs all sensor, feature, and context data for
off-line post-processing and validation.

Several mobile phone applications have been built on top
of FieldStream. These include an experience sampling pro-
gram that collects self-reported ratings of stress from the user
to validate stress inferences and an oscilloscope application
for visualizing bodily indices (e.g., heart rate and respira-
tion rate). Real-time health intervention applications, such
as stress management, are under development.

5.2 Data Quality Monitoring
To meet the stringent data quality requirements of scien-

tific studies, the system must provide the data quality con-
trols of laboratory environments in the natural environment.
Thus, FieldStream includes a data quality inferencing mod-
ule that detects common situations that lead to lower quality
data. When these situations are detected, the mobile phone
informs the user and displays a set of actions he/she can take
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Figure 13. The FieldStream system, including the phys-
ical sensors, engine (Network, Windowing, Features, and
Inferencing Layers), as well as the Mote, Window, Fea-
ture, and Context communication buses. Dotted arrows
represent the flow of data through the system.

to correct them. For example, over the course of a day of
wearing, an ECG electrode or a respiration band may grad-
ually loosen from the user’s body. This loosening results in
a gradual degradation of ECG data quality over the course
of day. Currently, FieldStream monitors four sensors for de-
tachment or loosening — ECG and GSR electrodes, respira-
tion band, and temperature probe attached to the chest. The
details of this module are described in [22].

5.3 Handling Data Losses
Packets sent from the motes to the bridge or from the

bridge to the phone could be lost in transmission. To en-
sure proper calculation of features and inferences, the system
must be aware of these losses. SressWare and FieldStream
handle lost data as follows. The bridge detects lost packets
and inserts null packets in the data stream to replace them
as described in more detail in Section 4.6. For losses in-
curred on the Bluetooth wireless channel, they are detected
at the phone, using sequence numbers. The FieldStream net-
work layer detects lost packets between the bridge and the
phone and inserts null packets in the data stream. This effec-
tively creates windows where some portion of the window
corresponds to null packets. Features cannot be computed
on these windows directly due to the null packets. Instead,
virtual sensors serve as a filter. They decide if there is enough
valid data in a window to compute accurate features of inter-
est from that window. If there is not enough valid data in the

window (e.g., < 66%), the window is discarded and no fur-
ther processing occurs over it. If there is enough valid data,
the null packets are removed from the window. If necessary,
an additional processing stage may also occur to transform
the valid data into a derived measurement (e.g., from ECG
to RR intervals). The virtual sensor then sends the clean data
onto the feature statistics module or onto another virtual sen-
sor for further processing. The use of a virtual sensor as a
filter on data losses means that feature computation and in-
ferencing algorithms later in the pipeline do not need to in-
dividually implement custom strategies to deal with missing
data.

6 Real-Life Deployment Experience
AutoSense was used by behavioral scientists in National

Institutes of Health (NIH) sponsored scientific studies of
stress, both in the lab and field. The goal of the study was
to capture physiological response to stress in the lab and
in the field so that reliable models for inferring stress from
physiological measurements could be developed. 21 subjects
were recruited from University of Minnesota, Duluth for this
study. Each subject wore the AutoSense sensor suite and
underwent a rigorous stress protocol that consisted of pub-
lic speaking, mental arithmetic, and cold pressor test. The
same participants then wore AutoSense during awake hours
on two separate days in their natural environment. They pro-
vided frequent self-reports of stress both in the lab and in the
field. Additional details of the study are provided in [23].

During the field study, physiological measurements from
all sensors were wirelessly transmitted to the FieldStream
framework running on an Android G1 smart phone. Over
30 features were computed from the physiological measure-
ments to make four inferences — whether the subject is
stressed, whether the subject is speaking (from respiration
measurements) to help contextualize the inference of stress,
changes in posture (from accelerometer) to again help con-
textualize the inference of stress, and intensity of physical
activity. The latter was used to mark and filter out measure-
ments overwhelmed by physical activity. In addition, the
system automatically detected sensor detachments in real-
time so that participants could re-attach sensors themselves.

6.1 Accomplishing User Study Goals
Overall, data collection statistics show AutoSense was

able to reliably and robustly capture sensor data in natural
environments. As described in [23], a total of 422 hours of
data were collected from participants across the two days of
the field study. The data captured by AutoSense enabled the
development and evaluation of two models of stress that cap-
ture the physiological and psychological effects of stress, re-
spectively [23]. Each model allows continuous prediction of
stress from physiological measurements. The first model de-
tects whether a minute of sensor data (respiration or ECG)
is a physiological response to a stressor. The second model
predicts whether a person perceives stress during a partic-
ular minute. As reported in [23], on lab data, the physio-
logical classifier achieves 90% accuracy and the perceived
stress model achieves a median correlation of 0.72 with self-
reported rating of stress.

AutoSense and FieldStream together enabled modeling
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of stress, a goal that has been sought after for decades. Au-
toSense enabled capture of high-quality ECG and respiration
in natural environments, the key signals used to model stress
in [23] and FieldStream provided a mechanism to capture
self-reports in the natural environment and synchronize them
with the signals captured by AutoSense.

6.2 Evaluation of Usability and Comfort
To evaluate the the usability and comfort of AutoSense

for wearing in the field for long hours, we administered an
exit survey at the end of the first and second field study days.
Survey questions included whether the chestband was a nui-
sance, interfered with daily activities or social interactions,
made the user feel self-conscious in public, caused phys-
ical discomfort, and was easy and enjoyable to use. Re-
sponses were provided on a 4 point scale (0=Strongly Dis-
agree, 1=Disagree, 2=Agree, 3=Strongly Agree). No statis-
tically significant differences were found between responses
given after the first and second day. Thus, we average partic-
ipant responses across both days in our analysis below.

Results show participants had positive reactions to the
chestband. Participants felt that the chestband was easy
(Mean ± Std.Dev = 2.06 ± 0.3) to use (ratings > 1.5 in-
dicate agreement). They indicated it was not a nuisance
(1.8±0.6) and did not interfere significantly with daily activ-
ities (1.6±0.6) or social interactions (2.0±0.6). They were
not self-conscious in public wearing the sensors (1.8± 0.7)
and the chestband did not cause them significant physical
discomfort (1.7±0.7).

In extemporaneous comments to the study coordinators,
some participants reported the RIP band and ECG electrodes
caused some redness of the skin and itching after 12 hours
of use. However, only one participant left the study after
the first day of field study, implying this discomfort was not
significant.

As the band must be worn about the upper chest, we ex-
pected some differences in the responses to these questions
based on gender. Thus, we did a between-subjects compar-
ison between male and female responses using two-tailed t-
tests (p < 0.05 is statistically significant). Results show sig-
nificant differences on four questions, whether the chestband
was a nuisance (p = 0.037), interfered with daily activities
(p = 0.047) and social interactions (p = 0.01), and made the
participant feel self-conscious (p = 0.008).

Figure 14 depicts the differences between male and fe-
male responses on these four statements. While men and
women both reported overall disagreement with these state-
ments, the figure shows that, compared to women, men indi-
cated the chestband was more of a nuisance, less socially ac-
ceptable, and interfered more with daily life. Based on com-
ments provided by male participants, we speculate men were
more concerned about these issues because, unlike women,
men are not used to wearing undergarments on their chest.
Furthermore, men may have been more self-conscious about
the chestband in social situations, since the band would make
them appear to have two protrusions on the chest which so-
ciety does not expect men to have. These protrusions corre-
spond to the location of the sensor motes.

The usability and comfort data has several implications
for future designs of the system. In the future, the respira-

tion band should be padded to eliminate the itching. Longer
wires connecting the single sensor mote to the electrodes
and RIP band would also be useful, as it would allow mov-
ing thicker sensor motes away from the chest area. These
changes would help reduce the concerns men expressed
about the chestband.
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Figure 14. Reported comfort and interference of
the chestband in daily life across men and women
(0=Strongly Disagree, 1=Disagree, 2=Agree, 3=Strongly
Agree). Error bars depict 1 positive and 1 negative stan-
dard deviation away from the mean.

6.3 Additional Ongoing Real-Life Usage of
AutoSense and FieldStream

Due to its successful use in scientific studies of stress,
there is a growing demand for use of AutoSense and Field-
Stream in additional studies of stress. A 3-day field study has
already been completed using AutoSense and FieldStream to
study the effect of interruption on stress. Additional studies
where AutoSense and FieldStream are worn by participants
for multiple weeks in their natural environment are ongoing.
Since April 2011, they are being used by 40 people over a
one-week period to capture how stress influences smoking
and alcohol consumption. Another 30 participants will be-
gin using the sensor suite for four one-week periods in Fall
2011. In this study, the goal is to examine the relationship be-
tween stress, craving for illicit drugs (e.g., cocaine, heroin),
and drug consumption. Over 50 sets of AutoSense sensor
suites have been manufactured for use in these user studies.

7 Related Works
In this section, we discuss related works on physiological

sensor suite, mobile phone framework, and those that have
advanced modeling of human behaviors, privacy, or study
designs by using the AutoSense and FieldStream platforms.

7.1 Physiological Sensor Suite
In the growing field of body sensor networks, a range

of wearable platforms for monitoring physiological signals
have been developed. Early platforms such as CodeBlue [16]
and BSN [34] utilize 802.15.4 transceiver based platforms
similar to Telos Mote to monitor ECG, temperature and
SpO2 vital signs. These systems enabled WSN researchers
to experiment with vital signs monitoring applications with
limited lifetime. More recent systems such as Berkeley Tri-
corder [20] that integrates ECG, EMG, Bioimpedance, and
SpO2 sensors, have improved signal quality and power con-
sumption, but still have a lifetime of less than 24 hours.
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For experimental work, several researchers use the
SHIMMER platform [15]. It a wireless sensor platform for
supporting long-term field studies that is fine-tuned for mo-
tion analysis. The design of the platform and the associ-
ated techniques for managing energy and radio bandwidth
are matched to the motion and activity monitoring applica-
tions. While physiological sensors can be added to the plat-
form, the resulting system would not cover all the modali-
ties required for stress inferencing. Additionally, the power
management techniques designed for accelerometer sensors
would be suboptimal for the physiological sensor modalities.

Similarly, commercially available wearable sensors for
collecting physiological measurements from the field have
one or more of the following shortcomings. They have only
a few sensors, are cumbersome to wear on a daily basis
without causing social embarrassment, or have a short life-
time. For example, LifeShirt from Vivometrics is a vest-
like device that can monitor ECG, respiration, skin temper-
ature, and physical activity. However, this wired system is
bulky, expensive, and uses proprietary wireless technology
not compatible with mobile phones. An increasingly popular
wireless health monitor called BioHarness BT from Zephyr
Technologies provides several measures, such as ECG, res-
piration, skin conductance, temperature, and activity, which
are transmitted to a mobile phone using Bluetooth. The main
drawback of BioHarness is its lifetime of only 24 hours.

In summary, most existing wearable sensor platforms that
can be used for continuous monitoring of physiological mea-
surements needed for robust stress assessment in the natural
environment have a lifetime of at most 24 hours. AutoSense,
on the other hand, is able to provide more than 10 days life-
time while continuously sampling and transmitting all six
sensors it hosts. Additionally, AutoSense is able to provide
virtually loss free and timely wireless transmission of sensor
measurements that is tolerant to proximity to human body,
tolerant to interference from other co-habiting wireless net-
works (e.g., Wi-Fi and Zigbee), and tolerant to crowding sce-
narios.

7.2 Mobile Phone Platforms
In comparison to existing inferencing systems for mo-

bile phones, FieldStream is most similar to the MyExperi-
ence system. MyExperience [4] collects objective data about
study participants on a mobile phone and triggers collection
of subjective data from participants based on simple context.
The MyExperience architecture is built on 3 core compo-
nents, sensors, triggers, and actions. Triggers are sets of con-
ditional logic on multi-modal sensor data. When a trigger is
true, its corresponding action is taken (e.g., prompt for self-
report). FieldStream shares other characteristics with previ-
ous mobile phone context inferencing systems. Two exam-
ples include the use of a dynamic activation manager that
only enables sensors and features that are needed by active
inferencing modules, and reducing resource usage (CPU,
battery) by doing a computation once and sharing the result
with all modules that need it [11, 32].

The JigSaw framework is designed to optimize sensing
pipelines for sensors commonly embedded in smartphones
(accelerometer, microphone, and GPS) [17]. JigSaw’s ac-
celerometer pipeline produces robust outputs under a variety

of positions and orientations. In addition, JigSaw reduces
energy consumption by deactivating or throttling down sens-
ing pipeline when behavioral inferences indicate they are un-
likely to provide new or high quality data.

FieldStream differs from the above systems in five ways.
First, FieldStream is capable of more sophisticated inferenc-
ing than has been demonstrated in previous mobile-phone-
based systems. It uses sophisticated signal processing to
compute features and can infer if a person is stressed [23]
or speaking [24] from those features. Second, FieldStream
uses hierarchical buses to share data and computation among
system entities. Third, FieldStream is capable of collecting
and processing data from both external wireless sensors and
sensors embedded in the smartphone. Fourth, FieldStream
detects sensor detachments and provides instructions to the
user on how to correct the problem in the field. Fifth, to our
knowledge, FieldStream is the only mobile sensing frame-
work that has been evaluated in the context of real-life scien-
tific field studies for several days [23, 25].

7.3 Usage of AutoSense and FieldStream Plat-
forms

In this paper, we present innovations in the development
of the AutoSense hardware platform and FieldStream mobile
phone software platform that was used to collect reliable data
from natural environment for various user studies, which en-
abled development of new models of stress [23] and new
models of conversation [24]. It was also used in another user
study that led to the discovery of new privacy issues in the
usage of mHealth systems [25] and exploration of appropri-
ate microincentive structures for participant compensation in
mobile health user studies [19]. Specifically, the above cited
works are investigations in modeling, privacy, and study de-
signs that use the data collected and annotated by the Au-
tosense and FieldStream systems. These are only the first
milestones in inferring human states and behaviors. Other
researchers are encouraged to use Autosense to conduct new
field studies and/or analyze the data collected by others. In
future, AutoSense and FieldStream platforms will be used to
develop models for inferring additional human behaviors or
health conditions of interest such as smoking, drinking, crav-
ing, etc. and to study the efficacy of new mHealth interven-
tions. We envision the AutoSense and FieldStream platforms
to become a comprehensive mobile health platform that can
be used to monitor various physical, mental, and behavioral
health issues, and to administer timely interventions in the
natural environment of individuals.

8 Conclusion and Future Work
AutoSense provides a comprehensive suite of ultra-low

power sensors that can be worn unobtrusively in the natural
environment of subjects to enable collection of physiologi-
cal measurements associated with stress response. Wireless
transmission to a mobile phone in real-time, makes it pos-
sible to realize several goals such as monitoring of physio-
logical responses to real-life stressors, objective and contin-
uous estimation of stress, triggering of self-reports close to
the occurrence of stress events, delivering interventions on
mobile devices close to the occurrence of stress, among oth-
ers. Additional sensors are being integrated in another sens-
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ing unit to assess addictive behavior such as alcohol. Taken
together, AutoSense will provide measurement of stress and
various behaviors that may be related to stress such as drink-
ing, smoking, physical activity, movement patterns, conver-
sations, etc. all on a single comprehensive platform, making
it a suitable platform for study of physical, behavioral, and
mental health in the natural environment. In future, scientific
studies can yield effective prevention and intervention appli-
cations, which can be delivered on the mobile phone in the
mobile environment, realizing the vision of mobile health.
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