
Glimpse: A Programmable Early-Discard Camera
Architecture for Continuous Mobile Vision

Saman Naderiparizi
Microsoft

U. of Washington

Pengyu Zhang
Microsoft

U. of Massachusetts Amherst

Matthai Philipose
Microsoft

Bodhi Priyantha
Microsoft

Jie Liu
Microsoft

Deepak Ganesan
U. of Massachusetts Amherst

ABSTRACT
We consider the problem of continuous computer-vision based
analysis of video streams from mobile cameras over extended
periods. Given high computational demands, general vi-
sual processing must currently be offloaded to the cloud. To
reduce mobile battery and bandwidth consumption, recent
proposals offload only “interesting” video frames, discard-
ing the rest. However, determining what to discard is itself
typically a power-hungry computer vision calculation, very
often well beyond what most mobile devices can afford on
a continuous basis. We present the Glimpse system, a re-
design of the conventional mobile video processing pipeline
to support such “early discard” flexibly, efficiently and accu-
rately. Glimpse is a novel architecture that gates wearable
vision using low-power vision modalities. Our proposed ar-
chitecture adds novel sensing, processing, algorithmic and
programming-system components to the camera pipeline to
this end. We present a complete implementation and eval-
uation of our design. In common settings, Glimpse reduces
mobile power and data usage by more than one order of
magnitude relative to earlier designs, and moves continuous
vision on lightweight wearables to the realm of the practical.

Keywords
Continuous mobile vision; low-power early discard; low-power
vision modalities; energy efficient wearable vision system

1. INTRODUCTION
Continuous visual analysis of video from wearable devices
has the potential to enable many applications beyond those
based on conventional wearable sensors such as accelerom-
eters and GPS [4, 14, 24, 30, 43]. However, modern com-
puter vision techniques, such as those based on Deep Neural
Networks, have resource demands that require cloud-based
servers rather than mobile processors [16]. The obvious so-
lution, off-loading all computer vision to the cloud, drains
the typical mobile battery within two hours, motivating a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys’17, June 19-23, 2017, Niagara Falls, NY, USA
c© 2017 ACM. ISBN 978-1-4503-4928-4/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3081333.3081347

(a)

(b)

Figure 1: Glimpse prototype and its applicability.(a)
Glimpse prototype board (size 5 × 8cm) (b) Entities of in-
terest to applications: the wearer’s hands [41], their conver-
sational partners’ faces [25], their partners’ limbs [7], nearby
walls [8, 47] and indoor places [44].

solution that can inexpensively select a few frames for cloud
processing. To our knowledge, no mobile-battery-based so-
lution to date is able to run continuously for a 10-hour day
while allowing flexible selection of informative frames. In
this paper, we present Glimpse, a hardware-software add-
on to the traditional mobile imaging pipeline that allows
frames to be selected for processing efficiently, averaging
under 100mW over a 10-hour day, and flexibly, allowing safe
application-level extension.

For continuous functioning, a frame-selection subsystem
must address the resource-accuracy tradeoff between resource
usage, i.e., restricting the execution cost of rejection so it
can run for extended periods, and accuracy, i.e., rejecting
as many uninteresting frames as possible while preserving
the interesting ones. A traditional solution to this problem
is to use low-power sensors such as inertial, light [21], time
[22] and even skin conductance [19] to trigger frame selec-
tion. These techniques score high on the resource-usage axis,
since these sensors usually consume orders of magnitude less
power than the image processing pipeline. However, in terms

292

http://dx.doi.org/10.1145/3081333.3081347


of accuracy, i.e. detecting all events of interest, they are lim-
ited: many situations of interest are simply not detectable
using low-datarate sensors.

At the other end of the spectrum are approaches that
use (less expensive) visual processing to trigger more ex-
pensive visual processing. Such vision-based triggers can be
quite rich relative to sensors, and include, e.g., those based
on pixel values (e.g., faces [25]), depth values (e.g., fore-
ground [8]) or temporal variation (e.g., “change” detection
[9]). However, because they re-use existing machinery (im-
agers, algorithms and processors) for visual processing, these
approaches are limited by the design assumptions baked into
these components:

• Imagers The quality of imaging necessary for selec-
tion is often much less then that for recognition. E.g.,
face detection works well at 25×25 grayscale [49] pixel
resolution; recognition requires 200×200 color [40].

• Algorithms Particular selection tasks often require
much less precision than general algorithms provide.
E.g., detecting a camera-wearer’s hand may only re-
quire checking if a pixel is within 1m, whereas a stereo
depth system may return cm-level depth for every pixel.

• Processors Standard mobile application processors
may be energy inefficient because of the mismatch be-
tween highly parallelizable image computations and
the inherently sequential nature of CPUs. For exam-
ple, temporal frame differencing for change detection
can easily keep a mobile applications processor busy
[9], impractical for day-long processing.

To avoid the overhead of reusing the standard vision pipeline
while preserving the benefits of vision-based frame selec-
tion, we advocate that vision-based frame selection be
treated as a first-class design goal, with a corre-
sponding dedicated hardware/software subsystem in
a mobile device. To this end, we present Glimpse, a
system dedicated to discarding uninteresting frames by it-
self performing coarse visual processing at very low power.
Glimpse combines several novel components in a novel way:
An array of gating sensors and imagers (including a thermal
imager and a stereo pair) draws substantially lower power
than the primary imager, and is adequate for many selection
(but possibly, not deeper analysis) tasks. A suite of coarse
image processing algorithms is optimized for common early
rejection sub-tasks using the gating imagers. A dedicated ef-
ficient gating computation fabric, comprising of a low-power
microcontroller and an FPGA, with efficient access to the
gating imagers, is designed to execute (coarse) vision al-
gorithms more efficiently than the standard CPU/DRAM
model. A simple programming model, based on rejection
cascades, allows applications to combine the output of gating
sensors into efficient, customized frame-selection classifiers.

Glimpse is fully implemented as a modular circuit board
(Figure 1a) and embedded software. We tested its frame
selection abilities by wearing it for 15 hours over 3 days and
programming it to select frames where a new person entered
the personal space of the wearer (as a front end for social
assistance [25, 33]), and those where the wearer’s hand came
in the field of view (as a front end for activity tracking appli-
cations [41, 50]). Glimpse is able to detect frames represent-
ing events of interest over 87% (100%) of the time for visual

imaging
imageF

processing
comms

lhhmW
7%k@.CfpsO

.ChhmWF7codec,IPO

.ChhmWF7AP,GPUO
8hhmWF 7WiFiO
.%hhmWF7USB6O

videoF
lyCMbps

.Chy.7hoFFOVF
lCFpix,o

battery

MicrosoftFBandFBattery: 7hmWtFlhhmAh@6:CVt.hhrs
GoogleFGlassFBattery: l.hmWtF6hhmAh@6:CVt.hhrs
lh-FCellFPhoneFBattery: l.hmWtF6hhhmAh@6:CVt.hhrs

Figure 2: Wearable camera pipeline. Day-long continu-
ous operation off a band/wearable-sized battery is infeasible
with the conventional wearable camera systems pipeline.

events longer than 1s (3s) while drawing roughly 41-54mW
for frame selection and 43-153mW in total. These represent
a 10-20× improvement over state-of-the-art mobile applica-
tion processor based implementations. We believe our work
is a significant step toward day-long, programmable, contin-
uous vision on wearable-device energy budgets.

2. BACKGROUND AND MOTIVATION
Figure 2 illustrates the structure and key performance char-
acteristics of a wearable camera pipeline comprised of state-
of-the art components. The basic pipeline consists of a high-
resolution, large field of view color imager1 feeding into a
compression and/or image processing subsystem. The re-
sulting video stream is either stored on board (not shown)
or transmitted using either wireless or wired communica-
tions (“comms”) module. In the figure, we detail the power
consumption of each component above the camera, and also
specify the average power budget of the entire camera, under
varying battery assumptions, below the camera.

We now consider two configurations. In the “full offload”
model, we could compress the resulting frames into a video
stream and offload it to, e.g., the cloud. Compression, via
a codec/image processor (IP) combination, would require at
least another 1.5W on top of about 200mW high-resolution
camera power consumption [1], and the resulting stream
would require a steady 800mW or more to offload via WiFi
(and considerably more via WWAN). In the “selective of-
fload” model, we could use an application processor (AP) to
detect and transmit frames of interest. Keeping up with
high-resolution 15fps would easily require multiple cores,
including GPU support [28], and consume 1.5W or more.
In this latter model, we would hopefully need to transmit
frames only a small fraction of the time (e.g., 10% of the
time), so that transmission power in this case would be
lower, say 10% of 800mW, say 80mW. In either model, av-
erage power draw from the camera would exceed 2W. These
numbers are in line with recent reported mobile vision sys-
tems [9].

This level of power consumption is problematic for two
reasons. First, as the lower part of Figure 2 shows, most
reasonable battery configurations will only yield at most
roughly 200mW. Thus, if the wearable device is to be pow-
ered by either a compact battery (a la Google Glass) or by
a fraction of a cell-phone battery (a generous 20% of the
battery), a constant power draw of 2W is roughly 10× more
than is sustainable. Second, for wearable devices of the Glass

1 A large field of view is critical to wearable devices because
interesting events occur in a wide area in front of the user.

293



Figure 3: The Glimpse hardware architecture.

form factor, a reasonable rule of thumb is that each Watt
of power dissipated raises the temperature of the device by
10◦C [28] above its surroundings. The resulting 20◦C (36◦F)
temperature rise is quite noticeable and potentially unpleas-
ant for wearable devices. Thus even if it is feasible to power
the entire camera via a wire connected to a large battery
pack, e.g., police cameras (this is the “USB” transmit option
in the figure), significantly reducing device power draw may
be important.

3. SYSTEM ARCHITECTURE
We now present the hardware and software architecture of
Glimpse.

3.1 Hardware Architecture
The primary imaging pipeline, as outlined in Section Sec-
tion 2 and colored gray in Figure 3, will typically contain
high-power imaging, computation and communications com-
ponents that consume an order of magnitude more power
than budgeted. Glimpse duty-cycles this pipeline so that
aggregate power consumption is below budget, implying a
duty cycle of 10% or less.

The design philosophy of Glimpse is to provide a variety of
low-power sensing (crucially, including a variety of imaging
options) and processing capabilities that can be combined in
a flexible manner to select frames inexpensively for a given
application. Glimpse therefore has two primary subsystems
(green and orange in Figure 3). Gating sensors run at rel-
atively high duty cycle compared to the primary imagers
and must consume relatively little power. Gating processors
initialize sensors, control communication with sensors, run
application extensions on sensed data, and coordinate task
execution with other processors.

Sensors typically run in the 1uW to tens of mW range.
These sensors are selected such that, for many applications,
they can (individually or collectively) predict whether the
primary imagers are likely to detect events of interest to
the application at any given time. Note that, crucially, gat-
ing sensors are not required to detect the interesting events
themselves. Thus, for example:
The inertial sensor (accelerometer and gyroscope) may in-
dicate that the velocity of the camera is high enough that
motion blur will make it unlikely that faces, or other specific
objects, can be detected or recognized.

The light sensor may indicate that light levels are not ad-
equate for detection or recognition.
The passive-infrared sensor, which is triggered when the
thermal signature of the field of view changes, may indicate
that it is unlikely that people or their parts are close to the
camera in the field of view.
The microphone, with accompanying custom analog spec-
tral decomposer for sub-mW acoustic feature extraction,
may indicate, based on acoustic activity, that the wearer
is in an uninteresting activity state (e.g., driving), or social
context (e.g., not in conversation).
The thermal (or far-infrared/FIR) imager, which re-
ports the temperature of every pixel in the field of view at
9 fps, may identify the parts of the field of view that are
unlikely to contain people, vehicles, lights, monitors, etc as
per their temperature.
The VGA grayscale imager pair, a pair of synchronized
low-resolution grayscale imagers, from which a depth map
of the field of view may be derived, may indicate that a part
or whole of the field of view is too far/close to be of interest.

In every case, these sensors act as gatekeepers to the pri-
mary imagers, hence the term “gating” sensors. Good gating
sensors have a few key characteristics:

1. Low power draw relative to the primary imager.

2. High information content in terms of predicting, for
a variety of applications, the required behavior of the
primary imaging pipeline with high recall: the gating
sensor must seldom falsely imply that the primary im-
ager need not wake up.

3. Low latency in making the prediction, since the pri-
mary imagers then need to be turned on to analyze
the detected image.

The gating calculations themselves, which determine if
a certain application is likely to find the current primary-
imager frame interesting, are performed on the gating pro-
cessors. These calculations range from simple digital IO
checks (e.g., on motion detection using passive IR sensors)
to lightweight computer vision algorithms (e.g., depth from
stereo on the grayscale pair and object tracking on a thermal
image). Gating processors must run at substantially lower
power than the primary imaging pipeline. Glimpse achieves
this by providing a very low-power microcontroller for sim-
ple calculations and user-friendly interface and a low power
FPGA to handle the vision algorithms, with a small amount
(e.g., 1 MB) of static RAM for buffering. The FPGA is also
responsible for reading data from gating imagers, which al-
lows FPGA-based vision algorithms to process pixels in a
“streaming” manner as they are read off the imager with no
intermediate memory accesses.

In summary, two aspects of the Glimpse hardware ar-
chitecture are especially worth noting. First, it advocates
the use of multiple possibly unconventional imaging tech-
nologies (e.g., thermal imager, low-power grayscale imager
and stereo pair) dedicated to frame selection. Second, it in-
corporates dedicated programmable hardware (i.e., FPGAs)
tightly coupled with these imagers for computations related
to selection.

3.2 Software Architecture
The Glimpse software architecture is designed to allow ap-
plications to specify custom frame selection criteria in a sim-

294



gating processorsgating sensors

stereo 
depth

feature calculation libraries
(esp. coarse image processing) 

thermal 
segmentation

thermal 
tracking

change 
detection

Glimpse hardware

…

application-level rejection cascades

wearer 
hand

partner 
face

proximal 
structure

scene 
type

…

sensor id 
[+ windows]

features
[+ windows]

sensor id sensor 
data

…
accel. 
value

control flow

data flow

Figure 4: The Glimpse software architecture.

ple, expressive and safe manner. Several applications should
be able to simultaneously register interest in frames, based
on a rich range of conditions without interfering with each
other, and without having to write Glimpse microcontroller
or FPGA code.

Glimpse takes the perspective that frame selectors are es-
sentially cost-sensitive classification cascades [49, 51]. As
such, they can be divided into relatively heavyweight fea-
ture calculation libraries and lightweight rejection cascades
(Figure 4), which applications can safely chain together to
make increasingly expressive but efficient classifiers as de-
scribed below.

3.2.1 Feature calculation libraries
Feature calculation is performed exclusively by optimized
native libraries. Features range from simple wrappers around
sensors like accelerometers to versions of visual primitives
such as depth estimation, tracking, segmentation and change
detection. Only feature calculators are allowed to interact
directly with sensors. Feature calculation is optimized both
via the design of new “coarse” versions of vision algorithms
(discussed in Section 4), and also via careful implementation
of these algorithms that, for instance, exploits the underly-
ing hardware such as the FPGA.

Each feature calculation function is required to take as
input a set of windows partitioning the field of view of the
primary imager and return a set of windows, each annotated
with a vector of values. For instance the “accelerometer”
value feature calculator may ignore the contents of its input
window and simply annotate it with system acceleration. On
the other hand, the thermal segmentation function, given a
window, returns a set of sub-windows along with the tem-
perature for each window. The depth estimator annotates
each of its input windows with the (coarse) depth of that
window.

3.2.2 Interpreting rejection cascades
Applications are allowed to define rejection cascades, small
programs that define classifiers. Glimpse provides a simple
embedded cascade interpreter to execute the cascade and
notify the primary imaging pipeline.

A cascade is a list of triples (fi, ŵi, ti). Each triple con-
sists of a reference f to a feature calculator, a vector ŵ
of linear-classification weights and a single scalar threshold
value t. Given a set Xi−1 of windows from the previous
step of the cascade (the first step always starts with a single
window that encompasses the entire field of view of the pri-

co
a

rs
e 

fe
a

tu
re

 c
a

lc
u

la
ti

o
n

smotion 
detection

enough 
motion?

discard windows + 
motion features

window

window

thermal 
segmentation

body 
temp?

discard windows + 
thermal features

windows

stereo 
depth

discard windows + 
depth features

windows

enable primary imaging pipeline

lin
ea

r 
cl

a
ss

if
ie

rs

depth < 3m?

(a) Human + hand detection

co
a

rs
e 

fe
a

tu
re

 c
a

lc
u

la
ti

o
n

sspeech
detection

discard windows + 
speech features

window

window

thermal 
segmentation

body 
temp?

discard windows + 
thermal features

windows

stereo 
depth

discard windows + 
depth features

windows

enable primary imaging pipeline

lin
ea

r 
cl

a
ss

if
ie

rs

Conversation?

depth < 3m?

(b) Conversation partner detection

Figure 5: Sample cascades. 5a shows a cascade that de-
tetcts if the wearer is either interacting with a human or
with an object in his hand. 5b shows a cascade that triggers
whenever the wearer is in conversation with another person.

mary imager), the interpreter applies feature calculator fi
to produce a new set X ′i = f(Xi−1) of candidate windows
and corresponding feature vectors Vi. For each candidate
window x′ij ∈ X ′i and corresponding feature vector v̂ij ∈ Vi,
the interpreter includes window x′ij in set Xi for processing
in the next cascade step if ti > v̂ijŵi, and rejects it other-
wise. If, at any step, no windows remain to be forwarded,
the interpreter stops. After the final stage of the cascade, if
any (non-rejected) windows remain, the interpreter notifies
the primary imaging pipeline to select a frame.

In Figure 4, solid arrows represent data flow, and dashed
lines control flow, during interpreter execution.

3.2.3 Sample cascades
Figure 5 illustrates two rejection cascades. Figure 5a shows
a cascade that triggers whenever either the wearer is in-
teracting with a human or an object in his hand. This
requires existence of human body parts closer than a cer-
tain distance (here set to 3m) from the wearer. It checks a
motion-detector (typically passive infrared based) to check
for adequate thermal activity in the field of view (either due
to background or the wearer motion). If not, it discards the
frame. If so, it uses thermal imager output to look for sub-
windows in the frame that are at body temperature; if none
are found, it rejects the frame. Finally, it checks the depth
of the surviving sub-windows, retains any within 3 meters
of distance and rejects the rest. If any windows survive,
the primary imaging pipeline is enabled. Feature extractors
that are inexpensive are expected earlier in the cascade, and
more informative, and usually more expensive ones, later.

295



Changing the depth threshold from 3 meters to 1 meter will
configure Glimpse to trigger only when the wearer’s hand is
in the field of view (e.g., detecting if the wearer is manipulat-
ing objects). These two cascades are evaluated in Section 7.

Similarly, Figure 5b illustrates another cascade that pro-
grams Glimpse to trigger whenever the wearer is in a conver-
sation with another human. The steps are identical to the
first cascade except here we replace “motion detection” step
with “audio detection” which uses a low-power microphone
and a microcontroller to detect if there is a conversation
happening. A noteworthy point about this cascade is that
the “speech detection” feature calculation library function
consists of a simple linear classifier coupled with a hardware
implementation of spectral features suitable for voice clas-
sification tasks [11, 32], yielding useful classification at the
1-mW power level.

We believe the Glimpse architecture attains a useful bal-
ance of simplicity, flexibility and safety. By providing op-
timized libraries that perform most of the heavy lifting,
Glimpse makes programming simple. By allowing applica-
tions to nevertheless combine a variety of feature libraries in
different orders, and by allowing early exits from processing
these libraries, Glimpse programs stay expressive and fast.
Finally, since applications can only specify linear orderings
in which features may be calculated, it is relatively simple to
bound the runtime cost of execution of cascades. In partic-
ular, because rejection cascades contain no application-level
loops, their safety is relatively easy to ensure.

4. COARSE IMAGE PROCESSING
Early-discard systems such as Glimpse have different accu-
racy requirements from primary imaging pipelines. In par-
ticular, primary imagers must discriminate between several
classes of interest, and achieve low false-positive and false-
negative rates for each class. Early-discard systems, on the
other hand, typically discriminate between a “background”
or “uninteresting” class and interesting ones, often a task
requiring less discriminatory power. More importantly, be-
cause the primary pipeline will re-process their results, they
are only required to have low false negative rates (i.e., they
should rarely reject interesting frames) and are allowed mod-
est false-positive rates: as long as they let through only a
small number of frames, it is acceptable for some large frac-
tion of those frames to be uninteresting.

Glimpse exploits these less-stringent accuracy requirements
by providing, via feature calculation libraries, coarse vari-
ants of several vision algorithms that are optimized for low
false-negative but modest false-positive classification. We
have found that it is feasible to approximate many existing
vision algorithms by systematically relaxing traditional com-
puter vision design choices such as distance metrics, accu-
racy, data representation bitwidth, output precision, trading
off global for local search and “giving up” conservatively on
hard cases. In the other words, we show that our approx-
imated algorithms are not only more power efficient than
their fine-grained variants, but they also provide satisfac-
tory accuracy when coarser levels of granularity are suffi-
cient. Below, we present two detailed case studies where we
use such coarsening techniques, stereo-based depth estima-
tion, and tracking in thermal video. We validate our design
choices via measurement studies in Section 6.

4.1 Coarse Stereo on FPGA

D

Object

Left 
Imager

Right 
Imager

B

Figure 6: Stereo vision setup. An object at distance D
in front of a stereo pair of cameras.

H

W

IL(0)

W

H

W

H

IL

(a) left image

IR

(b) right image

d*

IRIL

d
pi

(c) superimposed

Figure 7: Components of stereo matching.

As illustrated in Figure 7, traditional stereo takes as in-
put a pair of synchronized images (“left” and “right” images,
Figures 7a and 7b) captured by two aligned imagers (“Left
Imager” and “Right Imager” in Figure 6) at a fixed baseline
distance B from each other. When the left and right im-
ages are superimposed (Figure 7c), the image IL of a given
rigid object in the left image is displaced from its image IR
by an x-distance of d∗ pixels. The actual depth D of the
object is inversely proportional to d∗, so that finding the
displacement d∗ between corresponding patches in an image
(the “correspondence problem”) is the central computation
in stereo vision [18].

For each original patch at pixel (x, y) in the left image,
say the gray length-p patch in Figure 7c, the check is per-
formed by iterating over every length-p candidate patch in
the corresponding row of the right image (say the relative
offset, or disparity of the new patch is d pixels), calculating a
patch difference metric ∆ between the candidate patch (e.g.,
the green one in Figure 7c) and the original one, and finding
disparity d∗ that minimizes ∆:

d∗(x, y) = arg min
d

∆(IL(x : x+p, y), IR(x+d : x+d+p, y))

(1)
We optimize this calculation in several ways to reduce power
and real-estate consumption on our FPGA. Our goal is a
coarse depth algorithm that (a) only reports a few discrete
depth levels (e.g., 1m, 3m and ∞), and (b) only detects ob-
jects greater than a minimum size up to a minimum distance
(e.g., size 10cm up to 3m).

4.1.1 Relaxed Distance Metric
Glimpse relaxes the distance measure ∆. The standard mea-
sure sum-of-squares (SOS). We instead use the sum of ab-
solute difference (SAD) [26]:

∆(IL(x : x+ p, y), IR(x+ d : x+ d+ p, y)) =
p∑

i=1

|IL(x+ i, y)− IR((x+ i+ d), y)|
(2)

SAD can be implemented in FPGA fabric using a subtrac-

296



Difference

SADDifference

Figure 8: Microarchitectural support for buffer-free
disparity checking.

tion followed by a comparison, and is significantly less com-
plex than SOS, which requires multiplications.

4.1.2 Buffer-Free Microarchitecture
Most imagers output the pixels of each frame row-by-row.
Traditional stereo algorithms read the entire frame out to
memory (typically DRAM) and then iterate on this buffered
data when solving Equation 1. Such a buffered implementa-
tion requires almost continuous access to on-board DRAM,
adding a significant overhead to the stereo subsystem power
draw. To eliminate the overhead of buffering in memory,
we implement the correspondence algorithm in a streaming
fashion.

The key observation is that finding the correspondence
between two rows of spatially separated pixels translates to
finding the correspondence between delayed variants of the
pixels as they stream out from the imagers. Figure 8 shows
the hardware architecture of the depth calculator design.
This is composed of three HW building blocks: delay, com-
puting absolute difference between pixels, and accumulator,
which adds in and stores the running sum.

Delays are used to shift the pixel stream coming from the
left image sensor by the various disparity levels d we wish to
try. The delayed pixels from the left image are differenced
with the pixels from the right image. Each accumulator then
aggregates the results and outputs the measure of similarity
for the two image windows associated with a particular delay
length. The optimal disparity for a particular window is the
delay value which minimizes the similarity measure.

An important implication of the above design is that ev-
ery iteration of the minimization loop over d in Equation 1
has corresponding circuitry on the FPGA (i.e., the loop is
unrolled). Further, within the accumulator, the area of SAD
circuitry itself is proportional to the bitwidth of the pixel val-
ues being SAD’ed. In addition to avoid buffers, this design
has the advantage that these operations can be parallelized,
but poses the challenge of requiring additional real-estate.

4.1.3 Low-Bitwidth Pixel Representation
Most off-the-shelf cameras use 7 or 8 bits to represent mono-
chrome pixels. We hypothesize that if only coarse depth
estimates are required, it is possible to truncate the least
significant bits (LSB) of the pixels I(x, y) while introducing
little error. Note that a few bits of truncation makes the re-
sulting picture indistinguishable to the human eyes from the
original. On the other hand, in an FPGA implementation,

reducing the bitwidth of numbers manipulated in the in-
nermost loop yields roughly proportional reductions in gate
count and power at little reduction in accuracy of coarse
depth estimation (Sections 6.1 and 6.2).

4.1.4 Sparse Disparity Checking
Equation 1 moves the candidate patch to every possible dis-
parity d with respect to the original patch. In our subsam-
pled VGA image, we must consider nd = 60 different dispar-
ity values. The power consumption (and in our FPGA im-
plementation, the circuit size) is directly proportional to nd.
Reducing nd could therefore substantially improve matching
cost.

The intuition behind considering every possible disparity
d is to find the d∗ that absolutely minimizes the patch differ-
ence ∆. However, if we are willing to settle for a difference
d+ that is “close enough” to d∗, we could possibly get away
with testing fewer disparities. An initial try may be to shift
the candidate patch by k > 1 (instead of k = 1) pixels when
searching for d+. This brings up the question of how big
k can be. If it is too big, we run the risk of not detecting
objects smaller than k in image space. If too small, we lose
efficiency.

Our approach is to require only that objects of width ≥
Wmin will be detected. For instance, we may specify that
the object must be at least the size of a face, e.g., Wmin =
25cm. It is well known [18] (and simple to verify via high-
school geometry) that the width in pixels WD of an object’s
image is linearly related to the disparity d∗ between its left
and right images: WD = ad∗ + b for constants a and b.
Intuitively, the closer the object to the stereo pair, the larger
the disparity d∗, and the larger the size of the image, so
that the disparity and image size vary together. Now if we
only require that the candidate patch overlaps by a factor
of ω to its corresponding image from the other imager, as
d increases, the patch expands linearly so that the set of
pixels at which the candidate patch can be placed expands:
the gap k between positions of the candidate patch (i.e.,
values of d) can increase with d instead of remaining fixed.

In Glimpse, we fit the values of k greedily using data “la-
beled” by the brute-force k = 1 algorithm. Instead of check-
ing 60 disparities for every original patch, we settle on check-
ing 18 disparities d: {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17,
20, 23, 26, 30, 34, 39, 44, 50, 57} (thus k increases from 1 to
7), a 70% reduction in matching overhead and circuitry. We
require overlap ω = 0.95, and require faces to be detectable:
Wmin = 25cm. Section 6.1 shows that sparse checking is
accurate when applied to coarse depth estimation.

4.1.5 Depth Quantization
Coarse stereo introduces noticeable error in depth estimates.
This is problematic if applications rely on the coarse depth
estimation module for fine-grained depth information. For
instance, assume coarse depth estimation may introduce an
error of 0.3m when the object is about 5m away. If an ap-
plication were only interested in objects in a band 5.0-5.1m
away, using coarse depth to select frames for this purpose
could result in mistakenly ignored objects.

To remain conservative, i.e., to maintain good recall, Glimpse’s
coarse depth API only reports depth in a limited number
of bins (e.g., less than 1m, 1-3m, 3-10m and beyond 10m).
Given disparity d+ we derive the corresponding object depth
D+ and quantize it into these bins. The additional quantiza-

297



tion circuitry is minimal. The big impact, as we show in our
evaluation (Section 6.1) is that although the optimizations
described in the previous subsection introduce noticeable er-
ror in raw depth estimation, they are usually well within the
slack provided by the quantized bins.

4.2 Coarse FIR-Based Tracking
We now turn to functionality based on the thermal (or Far
Infra-Red (FIR)) imager, a sensor not broadly available on
camera platforms. FIR imagers have lower resolution (16×16-
80×80 pixels are common) than RGB, but provide temper-
ature at every pixel. In principle, therefore, they can often
directly detect the presence of exceptionally cool or warm
bodies (e.g., humans, vehicles, machines, monitors, lighting
fixtures) in the environment. One simple but useful feature
calculator based on the thermal sensor that Glimpse there-
fore provides, is a (time-averaged) temperature-based seg-
mentation module, which detects boxes in the field of view
with temperature above or below a specified threshold.

In this section, however, we present a related feature cal-
culator, a tracker, implemented on the Glimpse microcon-
troller, given the relatively small volume of data from the
FIR imager, that detects and tracks across frames objects
in a particular temperature range. Tracking is especially
important in early-discard systems such as Glimpse because
for many applications, once an object of interest is detected
in the field of view, it ceases being of interest. For instance,
an application may wish to be notified of a new face coming
into the field of view (it may capture a high-resolution frame
of the face using the primary imager for further analysis),
but once the face is identified it may wish to ignore it.

Glimpse allows high-level applications to notify it to ig-
nore the entity in a particular window. Glimpse does so by
tracking the window and not enabling the primary imager
on re-detecting it, even if it is otherwise interesting. Prior
work [9] has noted a similar benefit in tracking on mobile
devices to avoid uploading to the cloud.

4.2.1 Traditional Tracking in RGB
At a high level, tracking in RGB video works as follows
[17, 38, 42]. Suppose a window wt of frame ft is to be
tracked. Given the next frame ft+1, the goal is to calculate
window wt+1 in ft+1, such that wt+1 matches wt in appear-
ance and dynamics. To perform this match, the tracker may
recursively maintain velocity vt of wt, hypothesize that the
new location of the window is w′t+1 = wt + vt, and search
the vicinity of w′t+1 for the window wt+1 with the best ap-
pearance match to wt. Then the velocity gets updated and
the whole process repeated with the next frame, ft+2.

A key design choice is the manner in which the search for
the window with the best appearance match is performed.
Typically (e.g., [38]), the tracker identifies a set of keypoints
(locations) in wt. Each keypoint is associated with a descrip-
tor that encodes its surroundings in an illumination (and of-
ten scale) invariant manner. The tracker then identifies all
keypoints and associated descriptors in ft+1, and matches
the old descriptors to a subset of the new ones to determine
an appearance match to wt. Keypoints and related descrip-
tors are relatively computationally intensive to find because
they require scanning an entire (relatively) high-resolution
image, and need to be illumination invariant since illumina-
tion can change significantly across frames in RGB video.

A second choice that adds to the computational over-

Figure 9: White noise on the FIR camera’s pixel read-
ing. CDF of noise at each pixel of FIR camera for different
frame averaging lengths.

Figure 10: 8-bit binary spiral descriptor.

head of conventional tracking is the manner in which mul-
tiple possible matches are resolved, especially when track-
ing multiple objects. Resolving this ambiguity usually re-
quires some amount of global reasoning [42] possibly includ-
ing geometry-based consensus [38]. Below, we describe de-
signs for temperature-based keypoints; descriptors that are
simple, but fast and adequately accurate by conservatively
and quickly handle ambiguities in matching.

4.2.2 Temperature-Thresholded Keypoints
An advantage of FIR imaging is that it is fairly robust to the
environment, unlike RGB imaging. The measured tempera-
ture of a point does not change due to change in direction of
viewing, illumination sources in the environment, shadows,
etc. Given that the tracker is intended for use to track ob-
jects that have temperature T significantly different from the
background, Glimpse therefore uses the “raw” temperature
to find candidate locations for keypoints: all pixels in some
temperature range T±δ (we pick δ = 3◦C currently) are con-
sidered potentially matching keypoints. Given that the FIR
imager has only 1024 pixels (significantly less pixels than a
regular RGB camera), keypoint generation is extremely fast.

One complication is that FIR imagers are prone to (zero-
mean Gaussian) white noise [12]. We therefore average across
n = 3 frames to reduce the temperature variance. Figure 9
shows CDF of pixel reading noise from a fixed scene when
averaged over frame sub-sequences of varying lengths. It is
clear that no averaging (black curve) will result in about
±4◦C of noise, but a moving average over three consecu-
tive frames will reduce the generated noise to about ±2◦C.
Although averaging over five frames reduces the noise even
further, the resulting blur is unacceptable for our purposes.

4.2.3 Temperature-Spiral Descriptors
Given keypoints, we seek to associate descriptors with them

298



in order to determine which, if any, match with descriptors
from the previous frame. To ensure illumination, rotation
and scale invariance, traditional descriptors are fairly com-
putationally intensive, involving multiple rounds of gradient,
histogram and multi-scale smoothing calculations [10, 31].

For our descriptors, we simply choose an encoding of the
temperature values around the keypoint arranged in a spi-
ral. We present four different encodings/descriptors here
and evaluate their performance later in this paper. The
descriptors, detailed below, are 1. 8-bit binary 2. 24-bit
binary 3. 8-point absolute temperature and 4. 24-point
absolute temperature.

Figure 10 shows the 8-bit binary descriptor. The keypoint
(red pixel) and its neighboring pixels are shown in the Fig-
ure 10. This descriptor is an 8-bit number such that each of
its bits (bi) represent the logical result of comparing temper-
ature at pixel i and i+ 1. Similarly, 24-bit binary descriptor
follows the same procedure with the difference that we con-
sider two layers of circular neighboring pixels around the
keypoint instead of just one. The 8 and 24-points absolute
temperature descriptors are similar to the binary versions
with the difference that the ith element of the descriptor
vector is the temperature of the ith neighboring pixel of the
corresponding keypoint.

Finding the best match is standard: we use the sum of
absolute differences to compare absolute temperature de-
scriptors and using bitwise-xor for binary descriptors.

4.2.4 Losing Track Conservatively
A limitation of FIR imaging is that its resolution is low,
and different instances of objects often have indistinguish-
able thermal signatures. For instance, it is infeasible (for
even humans) to tell one person from another using cur-
rently available low-power thermal imagers. The problem
of resolving ambiguities between descriptors from multiple
objects is therefore especially challenging in FIR tracking.

Our solution is simply to be conservative about matching.
Applications will be notified if there is a potential break in
the track and it is up to the application to stitch together
tracks, potentially using higher level information such as
RGB pixels.

To implement conservative matching, at each time step,
Glimpse first expands each keypoint in the new frame ft+1

into a “blob” (i.e., connected component of similar tem-
perature values) surrounding it by iteratively thresholding
on pixel values, a simplified version of Otsu’s segmentation
method [39]. If any pair of blobs in the new frame are “too
close to each other”, we terminate the track.We determine
if two blobs are close to each other by dilating them by a
single pixel 2 and checking if the blobs merged. Given that
iterative thresholding, connected components and dilation
are fast operations, the implementation is fast.

5. HARDWARE IMPLEMENTATION
Glimpse is fully implemented as a modular add-on board
( 1a) called the “Glimpse Gating Board” (GGB). The board
is designed to run autonomously for a day on a 200mAh
battery. Any primary imaging system that has an “image
enable” line can be connected to Glimpse via a control line
and can communicate with it via a 2 Mbps SPI bus.

2Note that at 32×32 resolution, a single pixel represents
several degrees of spatial separation.

Figure 11: Glimpse gating board implementation
block diagram.

Figure 11 shows the block diagram for GGB. Given our
small power budget, all components are selected to balance
low power while providing adequate performance for coarse,
cascaded algorithms. Both the (Ti MSP430) microcontroller
and the (AGLN250 Igloo Nano) FPGA are some of the
lowest-power parts available in their category. Even a care-
ful implementation of coarse stereo matching (along with
video readout circuitry for the two imagers), for instance,
consumes half the FPGA. In many cases, power consump-
tion of components will reduce significantly in the near fu-
ture, tracking advances in commercially available parts. For
instance, that the highest power consumer is the (relatively
low-resolution) thermal FIR imager, a part ripe for improve-
ment.

6. EVALUATING COARSE VISION
We wish to answer three questions about the coarse vi-
sion (depth estimation and stereo tracking) algorithms in-
troduced in Section 4:

• What is their accuracy?
• What is their resource consumption?
• How do these vary with our design choices?

We use data collected under controlled conditions in these
experiments. We restrict detailed experimental evaluation
to the low-bitwidth representation, sparse disparity checking
and depth quantization optimizations of Section 4. With
respect to the other optimizations, briefly: 1. Using SAD
instead of SOS for distance measure (Section 4.1.1) yields a
depth measurement circuit that uses 42% fewer gates3, and
2. Buffer-free implementation of stereo (Section 4.1.2) saves
13% in average power draw over the buffered version.

6.1 Coarse Stereo: Accuracy
What is the impact of reducing the number of bits used to
represent pixels (Section 4.1.3) on precision of depth mea-
surement? To answer this question, we placed the Glimpse
camera in front of a textured wall and moved the camera
between 0.5m to 3.9m from the wall, by 0.3m increments.
For a set of patches of varying sizes s × s (s selected from
20, 40, 60 and 100pixels) in the field of view, we calculated

3Power reductions should be similar. The SOS-based circuit
is too large for implementation on our FPGA, so we cannot
report measured power gains.

299



(a) 20x20 (b) 40x40

(c) 60x60 (d) 100x100

Figure 12: Disparity error versus truncation length.

the pixel disparity d∗ while varying the number b of bits
used to represent the captured stereo pairs. We used b =
7, 6, 4 and 1, corresponding to 0, 1, 3 and 6-bit truncation.
Figure 12 reports the CDF of error in disparity d∗ relative
to the disparity measured from the un-truncated stereo-pair
version.

Two points are worth noting. First, relative error with a
3-bit truncation (i.e., b=4) is quite acceptable, whereas going
down to 6-bit truncation introduces a significant amount of
error in disparity estimation. We therefore use 3-bit trunca-
tion in Glimpse. Second, although the error depends to some
extent on the size of the patch being matched (larger patches
contain more visual information and thus less matching er-
ror), even small patches can be matched with quite small
error with 3 bits truncated. Even with s = 20-sized patches,
relative disparity is zero 82% of the time (red line in 12(a))
and 94% of the time, it is less than 9%. With s = 60, dis-
parity is zero over 93% of the time.

We now study the impact of quantized depth levels on
the accuracy of depth estimation Section 4.1.5. Suppose
that instead of estimating depth as precisely as possible,
we are only interested in knowing which of four bins the
depth belongs to: bin0:0-1m, bin1: 1-2m, bin2: 2-3m or bin3:
3-∞m. We focus now on the challenging 20×20 patches
and quantize the results of the above experiment into these
bins. In other words, we convert the pixel disparity for each
measurement into the actual depth then instead of basing
our analysis on the actual depth, we measure the bin index
in which it falls into. Figure 13 shows the results when 1 to 6
bits are truncated. For each truncation level, the bar shows
the distribution of the bin error. The bin error is simply the
absolute value of the difference between bin index calculated
using the truncated and un-truncated data. Focusing on the
3-bit truncation case, we see that at the bin level, 96% of the
measurements have zero bin error, and almost all the rest
are off by just one bin. We also note in passing that even for
6-bit truncation (i.e., just black and white pixels), quantized
accuracy is encouraging: ∼60% of measurements are binned
correctly.

In the above algorithms, we calculated the optimal dis-
parity d∗ by exhaustively checking all 60 possible dispari-
ties. We now evaluate sparse disparity checking (from Sec-
tion 4.1.4), assuming that a) we are only interested in depth
of objects wider than 25cm, and b) we are only interested
in bin-level precision. We recomputed bin-level results as in
the previous experiment, but now require the algorithm to

Figure 13: Bin-level depth error vs. truncation.

use just n ∈ {7, 17, 22, 37, 41, 50} different disparity checks,
using fixed bitwidth b = 4 (i.e., truncation length 3). We
compare the binning error relative to using all 60 checks.
Figure 14 shows results for patches of sizes s = 20 and 100.
The upshot is that n ≈ 37 checks are enough for excellent
bin-level accuracy over all patch sizes. In Glimpse, because
our patches tend toward being larger, we use just n = 22
disparity checks.

6.2 Coarse Stereo: Resource Consumption
How does resource consumption vary with our approximate
implementation of depth detection? Our primary target
FPGA is the Igloo Nano AGLN250. However the AGLN250
is not big enough to handle stereo depth detection with
full disparity checks and un-truncated pixels. For compari-
son purposes, we therefore consider the more powerful (and
power-hungry) AGL400 and M1AGL1000 FPGAs as well.

In our first experiment, we fixed bitwidth at 7, increased
the total number of allowed disparity checks until the AGLN250
ran out of resources, switched to AGL400 and continued in-
creasing the number of disparity checks until it ran out of
resources too and finally switched to M1AGL1000. At each
point we let the FPGA calculate the depth map over the
entire VGA frame which is computationally the most de-
manding version of our depth detection algorithm. We then
simulate power consumption and resource utilization of the
FPGA using Microsemi Libero SoC software. Figure 15a
shows power consumption and Figure 15b shows resource
utilization (i.e. fraction of all available logic elements on the
FPGA used) of the three FPGAs under different pixel dis-
parities. As shown in the figures, the power consumption in-
creases generally as the number of disparity checks increases.
Also the utilization of a particular FPGA increases as the
number of disparity checks increases.

Figure 16 examines the power draw and utilization impact
of different bit truncation. These experiments are performed
with n = 22 disparity checks. Resource use drops almost
linearly with optimization level (truncation length in this
case). Comparing with Figure 13 and Figure 14, we see

(b) 20x20 (c) 100x100

Figure 14: Bin-level error vs. no. of disparity checks.

300



(a) Power Consumption (b) Gate Utilization

Figure 15: Resource use versus disparity checks.

(a) Power Consumption (b) Resource Utilization

Figure 16: Resource use versus pixel truncation.

that 3-bit truncation and 22 disparity checks is likely the
accuracy/power sweet spot, yielding 95%+ accuracy on size-
60 patches at a stereo-computation draw of ∼ 12mW while
using less than 75% of the AGLN250 logic elements.

6.3 FIR Tracking
We now evaluate the coarse FIR tracking algorithm. We try
to answer three questions: 1. Accuracy: How well does
the algorithm keep track? 2. Resource use: How much
energy does the algorithm consume? 3. Design choices:
How well do the various spiral descriptors work?

To answer these questions, we performed the following
experiment. We pointed Glimpse into an empty office room
and asked two human subjects to enter and interact in the
field of view in a scripted manner for up to 25 seconds
per interaction. We collected 7 versions of the interaction
where subjects were moving at “slow” (leisurely strolling
with stops), “medium” (walking) and “fast” (brisk walking,
almost running) speeds. We manually annotated the tracks
i.e., added distinct boxes surrounding each subject in the
video and compared these “ground-truth” tracks to those
returned by (variants of) our algorithm.

Figure 17a shows how the average fraction of properly
tracked frames over total available frames varies with the
speed of movement and the various descriptors (in the “no
descriptor” case, just the temperature of the central pixel is
used as descriptor). The noteworthy points are: First, ab-
solute temperature descriptors are much better than the bi-
nary ones; the absolute value of the temperature is clearly a
lot more informative than a single bit representation temper-
ature change at each pixel. Second, the difference in track-
ing quality between the 8-point and 24-point descriptors is
relatively small, encouraging the use of 8-point descriptors
due to their lower computational complexity. Third, given
the absolute descriptors, the tracker does an acceptable job
of tracking: it maintains track for 60-90% of tracks on av-
erage, depending on whether subjects are moving fast or
slow. Fourth (Figure 17b), we applied a tuned state-of-the-
art RGB tracker [38] to the FIR videos to evaluate the im-
portance of FIR-specific descriptors. 17b shows that the
FIR-specific tracker clearly does better; we found that stan-
dard RGB descriptors do not fare well with low- resolution
thermal footage.

(a) Comparison of descrip-
tors

(b) FIR vs RGB tracker

Figure 17: FIR tracking evaluation. 17a shows for how
many frames our FIR tracker can contiuousely track an ob-
ject given different descriptors, and 17b compares the track
length of our FIR tracking algorithm vs a well-known object
tracking algorithm when applied to a theremal video.

Scenario PIR FIR Depth Total Precision

Driving 0.96 0.30 0.43 0.12 31%
Corridor 0.94 0.00 0.33 0.00 100%
Monitor 0.83 0.07 0.34 0.02 8%
Outdoor 0.99 0.23 0.20 0.04 1.7%
Lunch 0.99 0.50 0.34 0.17 42%

Meeting 0.97 0.13 0.23 0.03 12%
1 to 1 0.99 0.09 0.31 0.03 36%

Table 1: Glimpse pass-through rates and precision.

7. END TO END EVALUATION
Finally, we wish to understand how well suited the Glimpse
system is to its primary role of supporting day-long wearable
vision. One of the authors wore a Glimpse-based camera for
15 hours over three days of daily activity (roughly 3, 7 and 5
hours each) while running a cascade (Figure 5a) on Glimpse.
Glimpse produced a high-resolution 30-frame video snippet
every time a person came within 3 meters from the wearer
(typically a conversation partner) or the wearer’s hand en-
tered the Glimpse’s field of view. The rejection cascade used
is similar to that in 5a, except that the thermal segmen-
tation module was replaced by an FIR tracker as in Sec-
tion 4.2. The analysis of another cascade that triggers the
primary imager only when the wearer’s hand appeared in
the field of view is presented in Section 7.3.

All video produced by the primary imager was offloaded
via wireless to a mobile device. In this experiment we did
not attempt off-board analysis of the video. Common activ-
ities performed by the wearer included but were not limited
to, driving, going for lunch with friends, one-to-one meet-
ing, group meeting, playing ping-pong, corridor walking, out-
door walking, and working in front of a monitor.

We paired up a Glimpse Gating Board (GGB) with a
Raspberry Pi 3 board (which we call Gated Pi below) as
the primary imager, via a trigger wire. The Pi has an 8MP
imager. For the mobile device, the wearer carried a WiFi
connected laptop in a backpack; a production system would
likely use a mobile phone instead. To collect ground truth,
we added a second Raspberry Pi (the Continuous Pi) that
recorded all video in the field of view. Both Pis offloaded
data to the laptop via WiFi, one sporadically, the other con-
tinuously. We logged real-time power draw of the GGB, the
Gated Pi and its components to the laptop via a National
Instrument data acquisition system in the backpack.

301



Event Duration, d (s) d ≥ 3 3 > d ≥ 2 2 > d ≥ 1
Recall Rate (%) 100 96 86.5

Table 2: Glimpse recall rate vs event duration.

7.1 Gating Accuracy
The primary job of Glimpse is to reject many uninterest-
ing frames while letting through almost all interesting ones.
In daily use, what fraction (“pass-through rate”) of frames
did it allow to pass through? What fraction of these truly
should have passed through (“precision”)? What fraction of
all interesting events actually went through (“recall”)? We
answer these questions in this section.

Our detailed power measurements allowed us to monitor
in real time when each component of each cascade triggered,
and whether or not the Gated Pi was finally triggered. We
were therefore able to measure the pass-through rate of each
stage of the rejection cascades, and of the two cascades as a
whole. Table 1 reports the results, broken down per scenario.
For each cascade stage, we report the fraction of its input
passed through.

Overall, total pass-through rates range from 0 to 17%,
with an average (not shown) of roughly 6%. The ultra-low-
power PIR can reject 1-17% of input: it is especially good
at detecting inactivity when sitting roughly still in front of
the monitor. Both FIR and Depth are highly effective gates.
When walking in the corridor on these three days, the wearer
encountered just two persons, for which the FIR stage let
through 3 frames, which rounds off to a 0.00% pass-through.
The Depth system allowed one of these frames, for a 1/3
pass-through rate.

We inspected all passed through frames manually to deter-
mine what fraction had wearer hands or nearby people i.e.,
the precision. As the “Precision” column shows, Glimpse’s
precision is modest. Again, since the one frame let through
in the corridor was indeed a person, precision is 100%, even
though the overall pass-through rate rounds to 0.00.

Measuring recall is harder, since we need to inspect roughly
1.6M frames from Continuous Pi to determine if we missed
any events. We looked through the video manually and
counted instances where a hand or person appeared in the
field of view for duration d seconds, such that d ≥ 3, 3 >
d ≥ 2 and 2 > d ≥ 1. We found the shorter the event,
the more episodes there were when the object moved so fast
through the field of view that GGS, at 10FPS, was unable to
detect it. For events of modest (e.g., > 2s) length, however,
Glimpse has excellent recall (Table 2).

7.2 Resource Usage
What is Glimpse’s average power and wireless bandwidth
consumption? The low overall pass-through rate (6%) indi-

Scenario Total Primary GGS Depth FIR

Driving 116 67 49 6 38
Corridor 43 0.6 42 0.2 37
Monitor 80 39 41 1.4 33
Outdoor 80 30 50 5.1 40
Lunch 153 99 54 10 39

Meeting 85 39 46 2.8 38
1 to 1 73 26 47 2.2 39

Table 3: Glimpse power consumption (mW).

(a) Real-time Power Con-
sumption

(b) Real-time WiFi Utiliza-
tion

Figure 18: Real-time Power and WiFi Utilization.
Power consumption and WiFi transmissions of a primary
imager become bursty when it is being gated by Glimpse
system during an example one-to-one meeting scenario.

cates that power consumed by the primary imaging pipeline,
and data sent by it, should be correspondingly low. Further,
by design, the Glimpse board itself should have low power
draw. How do these play out in practice?

Table 3 shows the average power (mW) breakdown for
the major components of GGS, that of Gated Pi and their
sum. Overall average for the total power consumption (not
shown in the table) was roughly 112mW. 18a shows the
real-time power traces for Glimpse system in blue, Gated
Pi in green, and their overall power consumption in red.
This curve illustrates that power consumption of the Gated
Pi becomes bursty in the existence of Glimpse system in a
sample scenario of one-to-one. For comparison, the average
power draw of Continuous Pi, which off-boards all data is
1016mW. A few points are worth noting. First, Glimpse
total power consumption is low both in absolute and relative
terms. In relative terms, it is 7x to 25x lower than pure
offloading, depending on the scenario. In absolute terms,
its worst-case 153mW draw will allow it to run for over 5
hours on a tiny 200mAh battery; the average of 112mW
would allow almost 7 hours. Second, the gating board itself
(average draw 55mW) can easily be powered by a 200mAh
battery through a day. Third, the FIR sensor and tracker
is a power bottleneck, with the sensor itself averaging well
over 20mW.

Finally Table 4 shows savings in bandwidth utilization.
Figure 18b shows intermittent WiFi transmissions of Gated
Pi when triggered by Glimpse system in a sample scenario of
one-to-one meeting. Even when Gated Pi transmits a one-
second burst of video every time it is triggered, it still sends
4× to 16× less data. Our measurements show that if it only
sent one frame each time it was triggered, data sent would
reduce by another 3.2×. Overall, therefore, Glimpse clearly
has the potential to reduce data transmitted by roughly 12-
50× relative to pure offloading. Of course, all these reduc-
tions are predicated on the application only being interested
in a sparse set of frames.

7.3 Glimpse Programmability
Here we run a cascade on the Glimpse similar to Figure 5a

except the depth threshold is set to 1 meter. The goal here
is to trigger the primary imager whenever the wearer’s hand
enters the field of view, indicating that the wearer is prob-
ably interacting with an object. Here we ask the Glimpse
wearer to interact with objects in hand while standing in an
office setting with background thermal activities. In each ex-
periment we varied the temperature threshold from 33◦C to

302



Scenario Gated BW(Mbps) Baseline BW(Mbps)

Driving 1.01 5.90
Corridor 0 5.15
Monitor 0.58 8.72
Outdoor 2.46 10.56
Lunch 2.61 8.25

Meeting 0.14 1.58
1 to 1 0.24 3.14

Table 4: Glimpse WiFi bandwidth consumption.

(a) Pass-through vs Temper-
ature

(b) Recall vs Temperature

Figure 19: Recall vs pass-through rate trade-off. Re-
call and trigger dependence on the temperature threshold
for hand detection cascade.

37.5◦C and measured the recall and the pass-through rates
of the detected frames.

Figure 19 shows the recall and pass-through rates versus
the threshold temperature on two separate graphs. The key
observation is that as the temperature threshold increases
the pass-through rate decreases which helps lowering the
power consumption but it decreases the recall rate as well.
There is a clear trade-off between the total power consump-
tion (pass-through rates) and the resulting recall rate, which
can be controlled straightforwardly via the corresponding
parameter in the rejection cascade.

8. RELATED WORK
Glimpse is built based on previous research on continuous
mobile vision, ultra-low power depth sensing, and FarIR
tracking. However, our system differs from previous work
from multiple perspectives.

Continuous mobile vision: Prior work investigates var-
ious layers across the vision processing pipeline to identify
the power bottleneck of each layer. Traditional off-the-shelf
image sensors’ power consumption is not proportional to
their frame rate and resolution, thus it is not feasible to
trade quality with power consumption using them. [23] [27]
[5] tune hardware parameters of an image sensor to achieve
proportional energy consumption to the number of pixels
sensed. [29] leverages shared intermediate results within a
vision processing software framework to reduce redundant
computational overhead. [15] and [6] look at the benefit
of using low-power accelerometers to gate the operation of
the image sensor. Perhaps the biggest difference between
our work and these is our advocacy for a dedicated hard-
ware/software subsystem that, perhaps paradoxically, in-
cludes imagers, that applications can use in a programmable
manner to control the computer vision costs they would in-
cur by using the primary imaging pipeline.

Sensing depth at low power: Sensing depth at low
power is hard in general. Several depth sensors [2] can op-
erate at low power and high resolution. However, these sen-

sors just report the depth of a single pixel. Other sensors
[3, 34, 46, 48, 52, 53] can compute the depth of a wide field of
view with high resolution. However, their power consump-
tion is high. Our primary insight is that for purposes of
early discard, it is often adequate to have depth estimated
in subsets of the field of view and at coarse resolution. By
identifying corresponding relaxations in the algorithm de-
sign, we deliver useful depth estimation at a few mW.

FarIR tracking at low-power: Prior works use FarIR
sensors to detect the presence of objects of interests for
Heating, Ventilation, Air Conditioning, (HVAC) and light-
ing control of building [13]. [20] also looks at the opportunity
of using FarIR sensors for objects tracking. Different from
these work, our FarIR subsystem is a customized design that
can run on a microcontroller at low-power consumption.

Battery-free cameras: Work parallel to ours has shown
battery-free cameras that harvest energy from ambient Ra-
dio Frequency (RF) signal sources and capture and transmit
images on a forced duty-cycled basis [36] [45] [37]. These
devices reduce the maintenance costs of camera systems by
eliminating the battery, but due to their constrained en-
ergy budget, they suffer from limited computational capa-
bilities required for on-board complex machine vision oper-
ations [35]. Although the vision algorithm presented here
cannot be applied to those such energy constrained devices,
the idea of application-specific cascaded operation for gating
a high-power sensor using low-power sensors and algorithms
(such as the use of motion detectors) seems a feasible ap-
proach to enable battery-free devices with more continuous
operation.

9. CONCLUSION
In this work we designed, implemented and evaluated Glimpse,
a programmable embedded system designed to detect at low
power events worthy of further processing. Key innovations
include a low-power imager array and computational fabric
dedicated to image-discard calculations, a safe but expres-
sive programming model for applications and coarse vari-
ants of conventional stereo depth and tracking algorithms
suited for the discard pipeline. Combining Glimpse with a
high-power imaging pipeline system allows the high-power
pipeline to process less than 10% of the frames it would
have processed otherwise, while drawing about 100mW of
overall power. Correspondingly, the amount of video data
transmitted for further processing is also lower by an or-
der of magnitude. Based on these results, we believe that
Glimpse moves continuous vision on lightweight wearables
to the realm of the practical.

References
[1] Ambarella a9 ultra hd 4k camera soc prod-

uct brief. http://www.ambarella.com/uploads/docs/
A9-product-brief.pdf.

[2] Long distance measuring sensor datasheet.
http://www.sharp-world.com/products/device/
lineup/data/pdf/datasheet/gp2y0a02yk e.pdf. Ac-
cessed: May 2017.

[3] Stereographic depth mapping on an fpga.
https://courses.cit.cornell.edu/ece576/FinalProjects/
f2010/pfk5 jk459/pfk5 jk459/index.html.

303

http://www.ambarella.com/uploads/docs/A9-product-brief.pdf
http://www.ambarella.com/uploads/docs/A9-product-brief.pdf
http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0a02yk_e.pdf
http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0a02yk_e.pdf
https://courses.cit.cornell.edu/ece576/FinalProjects/f2010/pfk5_jk459/pfk5_jk459/index.html
https://courses.cit.cornell.edu/ece576/FinalProjects/f2010/pfk5_jk459/pfk5_jk459/index.html


[4] S. Agarwal, M. Philipose, and P. Bahl. Vision: The case
for cellular small cells for cloudlets. In International
Workshop on Mobile Cloud Computing and Services,
2014.

[5] S. U. Ay. A 1.32 pw/frameÂě pixel 1.2 v cmos energy-
harvesting and imaging (ehi) aps imager. In Solid-
State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 116–118.
IEEE, 2011.

[6] P. Bahl, M. Philipose, and L. Zhong. Vision: cloud-
powered sight for all: showing the cloud what you see.
In Proceedings of the third ACM workshop on Mobile
cloud computing and services, pages 53–60. ACM, 2012.

[7] S. Bambach, J. M. Franchak, D. J. Crandall, and C. Yu.

Detecting hands in childrenâĂŹs egocentric views to
understand embodied attention during social interac-
tion. Proceedings of the 36th Annual Conference of the
Cognitive Science Society (pp. 134-139). Quebec City,
Canda: Cognitive Science Society, pages 134–139, 2014.

[8] S. Blessenohl, C. Morrison, A. Criminisi, and J. Shot-
ton. Improving indoor mobility of the visually impaired
with depth-based spatial sound. In ICCV-ACVR work-
shop, December 2015.

[9] T. Y. Chen, L. Ravindranath, S. Deng, P. Bahl, and
H. Balakrishnan. Glimpse: Continuous, real-time ob-
ject recognition on mobile devices. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor
Systems, SenSys 2015, Seoul, South Korea, November
1-4, 2015, pages 155–168, 2015.

[10] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In In CVPR, pages 886–893,
2005.

[11] Y. Deng, S. Chakrabartty, and G. Cauwenberghs. Ana-
log auditory perception model for robust speech recog-
nition. In IEEE International Joint Conference on Neu-
ral Networks, 2004.

[12] E. L. Dereniak and G. D. Boreman. Infared Detectors
and Systems. Wiley, second edition, 1996.

[13] V. L. Erickson, A. Beltran, D. A. Winkler, N. P. Esfa-
hani, J. R. Lusby, and A. E. Cerpa. Toss: Thermal oc-
cupancy sensing system. In Proceedings of the 5th ACM
Workshop on Embedded Systems For Energy-Efficient
Buildings, pages 1–2. ACM, 2013.

[14] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive assis-
tance. In MobiSys, 2014.

[15] S. Han, R. Nandakumar, M. Philipose, A. Krishna-
murthy, and D. Wetherall. Glimpsedata: Towards con-
tinuous vision-based personal analytics. In Proceedings
of the 2014 workshop on physical analytics, pages 31–
36. ACM, 2014.

[16] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman,
and A. Krishnamurthy. MCDNN:An Approximation-
Based Execution Framework for Deep Stream Process-
ing Under Resource Constraints. In Proceedings of the

14th International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys). ACM, 2016.

[17] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M. M.
Cheng, S. L. Hicks, and P. H. S. Torr. Struck: Struc-
tured output tracking with kernels. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
38(10):2096–2109, Oct 2016.

[18] R. I. Hartley and A. Zisserman. Multiple View Geom-
etry in Computer Vision. Cambridge University Press,
ISBN: 0521540518, second edition, 2004.

[19] J. Healey and R. W. Picard. Startlecam: A cyber-
netic wearable camera. In Second International Sym-
posium on Wearable Computers (ISWC 1998), pages
42–49, 1998.

[20] P. Hevesi, S. Wille, G. Pirkl, N. Wehn, and P. Lukow-
icz. Monitoring household activities and user location
with a cheap, unobtrusive thermal sensor array. In
Proceedings of the 2014 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, pages
141–145. ACM, 2014.

[21] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan,
A. Butler, G. Smyth, N. Kapur, and K. R. Wood. Sense-
cam: A retrospective memory aid. In UbiComp 2006,
pages 177–193, 2006.

[22] J. Hoisko. Context triggered visual episodic mem-
ory prosthesis. In Fourth International Symposium on
Wearable Computers (ISWC200.

[23] K. Kagawau, S. Shishido, M. Nunoshita, and J. Ohta.
A 3.6 pw/frameâ· pixel 1.35 v pwm cmos imager with
dynamic pixel readout and no static bias current. In
Solid-State Circuits Conference, 2008. ISSCC 2008. Di-
gest of Technical Papers. IEEE International, pages 54–
595. IEEE, 2008.

[24] T. Kanade and M. Hebert. First-person vision. Pro-
ceedings of the IEEE, 100(8):2442–2453, 2012.

[25] S. Krishna, G. Little, J. Black, and S. Panchanathan.
A wearable face recognition system for individuals with
visual impairments. In Proceedings of the 7th Inter-
national ACM SIGACCESS Conference on Computers
and Accessibility, Assets ’05, pages 106–113, New York,
NY, USA, 2005. ACM.

[26] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos. Review
of stereo vision algorithms: From software to hardware.
International Journal of Optomechatronics, 2(4):435–
462, 2008.

[27] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong,
and P. Bahl. Energy characterization and optimization
of image sensing toward continuous mobile vision. In
Proceeding of the 11th annual international conference
on Mobile systems, applications, and services, pages 69–
82. ACM, 2013.

[28] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and
L. Zhong. Draining our glass: An energy and
heat characterization of google glass. arXiv preprint
arXiv:1404.1320, 2014.

304



[29] R. LiKamWa and L. Zhong. Starfish: Efficient concur-
rency support for computer vision applications. In Pro-
ceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, pages
213–226. ACM, 2015.

[30] H. Liu, M. Philipose, M. Pettersson, and M.-T. Sun.
Recognizing object manipulation activities using depth
and visual cues. Journal of Visual Communication and
Image Representation, 25(4):719–726, 2014.

[31] D. G. Lowe. Object recognition from local scale-
invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, vol-
ume 2, pages 1150–1157 vol.2, 1999.

[32] H. Lu, A. B. Brush, B. Priyantha, A. K. Karlson,
and J. Liu. Speakersense: Energy efficient unobtru-
sive speaker identification on mobile phones. In In-
ternational Conference on Pervasive Computing, pages
188–205. Springer, 2011.

[33] B. Mandal, S. Chia, L. Li, V. Chandrasekhar, C. Tan,
and J. Lim. A wearable face recognition system on
google glass for assisting social interactions. In Com-
puter Vision - ACCV 2014 Workshops - Singapore, Sin-
gapore, November 1-2, 2014, Revised Selected Papers,
Part III, pages 419–433, 2014.

[34] C. Murphy, D. Lindquist, A. M. Rynning, T. Cecil,
S. Leavitt, and M. L. Chang. Low-cost stereo vision
on an fpga. In Field-Programmable Custom Comput-
ing Machines, 2007. FCCM 2007. 15th Annual IEEE
Symposium on, pages 333–334. IEEE, 2007.

[35] S. Naderiparizi, Z. Kapetanovic, and J. R. Smith. Wis-
pcam: An rf-powered smart camera for machine vision
applications. In Proceedings of the 4th International
Workshop on Energy Harvesting and Energy-Neutral
Sensing Systems, pages 19–22. ACM, 2016.

[36] S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Rans-
ford, and J. R. Smith. Wispcam: A battery-free rfid
camera. In RFID (RFID), 2015 IEEE International
Conference on, pages 166–173. IEEE, 2015.

[37] S. Naderiparizi, Y. Zhao, J. Youngquist, A. P. Sample,
and J. R. Smith. Self-localizing battery-free cameras. In
Proceedings of the 2015 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, pages
445–449. ACM, 2015.

[38] G. Nebehay and R. Pflugfelder. Consensus-based
matching and tracking of keypoints for object track-
ing. In Applications of Computer Vision (WACV), 2014
IEEE Winter Conference on, pages 862–869, March
2014.

[39] N. Otsu. A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62–66, Jan 1979.

[40] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face
recognition. In BMVC, 2015.

[41] H. Pirsiavash and D. Ramanan. Detecting activities of
daily living in first-person camera views. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 2847–2854. IEEE, 2012.

[42] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes.
Globally-optimal greedy algorithms for tracking a vari-
able number of objects. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on,
pages 1201–1208. IEEE, 2011.

[43] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wether-
all, and R. Govindan. Odessa: Enabling interactive
perception applications on mobile devices. In Mobisys,
2011.

[44] S. Rallapalli, A. Ganesan, K. Chintalapudi, V. N. Pad-
manabhan, and L. Qiu. Enabling physical analytics in
retail stores using smart glasses. In Proceedings of the
20th annual international conference on Mobile com-
puting and networking, pages 115–126. ACM, 2014.

[45] V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi,
S. Gollakota, and J. R. Smith. Powering the next bil-
lion devices with wi-fi. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and
Technologies, page 4. ACM, 2015.

[46] N. H. Tan, N. H. Hamid, P. Sebastian, and Y. V. Voon.
Resource minimization in a real-time depth-map pro-
cessing system on fpga. In TENCON 2011-2011 IEEE
Region 10 Conference, pages 706–710. IEEE, 2011.

[47] R. Tapu, B. Mocanu, and T. B. Zaharia. ALICE: A
smartphone assistant used to increase the mobility of
visual impaired people. JAISE, 7(5):659–678, 2015.

[48] R. Y. Tsai. A versatile camera calibration technique
for high-accuracy 3d machine vision metrology using
off-the-shelf tv cameras and lenses. Robotics and Au-
tomation, IEEE Journal of, 3(4):323–344, 1987.

[49] P. Viola and M. J. Jones. Robust real-time face
detection. International journal of computer vision,
57(2):137–154, 2004.

[50] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and
J. M. Rehg. A scalable approach to activity recognition
based on object use. In 2007 IEEE 11th International
Conference on Computer Vision, pages 1–8, 2007.

[51] Z. Xu, M. Kusner, M. Chen, and K. Q. Weinberger.
Cost-sensitive tree of classifiers. In ICML, 2013.

[52] Z. Zhang. A flexible new technique for camera calibra-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(11):1330–1334, 2000.

[53] Z. Zhang. Camera calibration with one-dimensional ob-
jects. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(7):892–899, 2004.

305




