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FIGURE 1. A team member wearing the iShadow glasses
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 THE “I”  
IN THE  
EYE

The eye is a truly unique and fascinating 
piece of physiology. Through it, 
organisms take in massive amounts 
of sensory data; through it, they also 
communicate emotion and intent both 
consciously and unconsciously. It is so 
tightly coupled with the operation of the 
brain that even slight mental blocks like 
being tired are measurable through eye 
movements. Eye-related research has 
long worn out the cliché “the eyes are the 
window to the soul,” and this is largely 
because there is a deeper truth behind 
this phrase that has come to light in the 
last several decades of psychology and 
neurology research. In short, we now 
understand that the eyes are the best 
window to the mind. (Kahneman 2011)
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It goes without saying that being able 
to emulate, understand, and even 
manipulate the way that humans behave 
and engage with the world is a worthy 

goal for computer science researchers of 
most flavors. This is obviously in large part 
due to species selfishness, since humans are 
the designers, operators, and the primary 
beneficiaries of computing machinery. Even 
when we set aside that self-interest and 
consider the issue from a purely scientific 
standpoint, the brain is a massively powerful 
computation engine that has been honed by 
millions of years of evolution. To be able to 
better understand its operation related to 
one of the most complex and useful tools 
in our species’ possession – our sightedness 
– would be a significant step forward for 
science. As we discover that algorithms 
emulating the neurons of the brain are 
particularly effective for object recognition 
and other vision tasks (Szegedy, Toshev and 
Erhan 2013), one wonders how much we 
could accelerate those efforts by having a 
more complete understanding of the most 
effective vision engine known to man.

We shouldn’t overlook the “selfish” aspect 
in all of this, though. While the complexities 
of the brain’s operation have resisted a 
comprehensive understanding and will likely 
continue to do so for a long time to come, 
there is much lower-hanging fruit to be 
had. Specifically, the systematic observation 
and analysis of how we use our eyes in 
everyday situations could potentially lead to 
enormous benefits for public health. Even 
without understanding the visual cortex to 
its fullest, we can observe very consistent 
patterns in how the eyes move that allow us 
to infer a person’s cognitive functions – i.e., 
what they’re thinking about and how they’re 
processing it. Armed with this knowledge, 
we can go a step further and engage with 
the user either by providing them useful 
information for their task or redirecting 
their attention elsewhere (e.g., reminding a 
distracted driver to look at the road). This 
kind of “augmented living” is one of the 
major goals of the mobile health (mHealth) 
research community, and we believe that a 
key step towards that goal is being able to 
unobtrusively and continuously instrument 
the human eye, a concept commonly 
referred to as “eye tracking.”

Another principal goal of the mHealth 
movement is early diagnosis of illnesses of all 

forms. In this regard, eye tracking opens up 
new possibilities that have traditionally been 
difficult or impossible to measure directly in 
a non-lab setting. The most straightforward 
candidates are illnesses directly relating to 
the eyes – lazy eye, glaucoma, etc. However, 
the intimate connection between the eyes 
and the brain means that many health 
conditions related to mental functions can be 
diagnosed from the eye. It has been shown 
by medical researchers that a wide range of 
such conditions can be detected through eye 
tracking. The list includes relatively simple 
effects such as fatigue, but also includes more 
severe issues including ADHD (Fried 2014), 
autism (Schmitt 2014), and even Alzheimer’s 
disease (Molitor 2015).

EYE TRACKING IN THE WILD
Nothing discussed so far is particularly 
eye-opening (pardon the pun) to those who 
are familiar with this area of work. The uses 
of eye tracking have been known or at least 
suspected for decades or more, and since the 
mid-1900s there have been many devices 
built for quantifying eye movements (see 
Hanson 2010 for an excellent overview). 
Contemporary devices boast near-perfect 
accuracy using conventional camera 
technology. Such tools have facilitated a huge 
step forward for our understanding of the 
human visual system. 

The Achilles’ heel of traditional eye 
tracking tools, however, is that they are 
restricted to a laboratory environment. They 
must be carefully deployed and calibrated 
in order to function properly; the subject 
must be brought indoors and seated for 
the duration of data collection. Obviously, 
such technologies are not of great utility to 
the mHealth effort since a tool cannot be 
used for mobile health if it has no mobility. 
Being forced to remain in the lab means 
that it is not possible to build systems for 
interventional or assistive purposes and it 
restricts researchers from doing any kind of 
longitudinal, in-situ studies that would be 
of great benefit for the purposes previously 
described. Lastly, even medical diagnosis 
is hindered by this restriction – like a 
heart arrhythmia, aberrant eye patterns 
indicative of mental health issues may arise 
only sporadically and not be caught during 
a brief examination or recording period. 
Continuous monitoring improves the chance 
of a prompt diagnosis. 

The natural response to this problem is to 
build a mobile device that subjects can carry 
with them. Major vendors of eye-tracking 
tools have been building wearable systems 
since the early 2000s. These systems are 
almost always head-mounted and normally 
take the shape of eyeglasses. However, these 
devices have been beset by a number of 
severe engineering challenges. 

Scaling down the technology has 
proven challenging – high-end eye tracking 
systems rely on high-definition cameras 
with specialized, consistent lighting. 
Collecting and processing the data from 
such cameras requires a high amount of 
secondary resources – digital storage for 
potentially gigabytes of raw video data, a 
powerful computer for running the eye 
tracking algorithm, and a power supply for 
these devices and the cameras themselves. 
In short, to do effective mobile eye 
tracking traditionally requires the subject 
to be wearing the equivalent of a desktop 
computer. 

While the industry has made great strides 
forward in the technical domain, even the 
most modern wearable eye trackers are 
relatively bulky headsets wired to a battery 
pack and a smartphone. Even with this 
setup, they typically run down the battery 
in two to four hours, which is not suitable 
for longitudinal studies of behavior over 
the course of a day. Power issues aside, such 
devices are obtrusive and very obvious when 
being worn, making it unreasonable to have 
people wear them in normal environments 
(home, work, etc.) for extended periods due 
to social considerations.

ISHADOW: LIGHTWEIGHT,  
LOW-POWER EYE TRACKING
We decided to tackle the problem of 
building a wearable eye-tracking device 
from the opposite direction. Instead of 
trying to miniaturize existing systems, we 
opted to design a new regime for doing eye 
tracking based on a platform built with the 
following key design goals:

1. Unobtrusiveness: In order to be useful as 
a practical wearable device for studies and 
other in-the-wild deployments, the tracker 
must have minimal impact on the normal 
behavior of the wearer. This generally 
means a small form factor and little or  
no extra equipment to be carried.
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2. Performance: The device must be able 
to track the eyes accurately enough and 
at a high enough rate to be useful for the 
types of studies and interventions that 
researchers in the field care about.

3. Longevity: An ideal system would be 
able to operate for as long as the wearer is 
awake without needing to be recharged, so 
as to be able to record all waking activity 
while adding minimal burden to the user.

The major theme underlying all of these 
goals is power consumption – a device that 
requires less power will last longer and 
will have a smaller footprint. These goals 
led us to build the iShadow “computational 
eyeglass” platform, pictured in Figure 1. 
Our evaluation of the system on 10 subjects 
showed that the system had an error rate of 
3° for gaze prediction and a max power con-
sumption of 70 mW (A. P. Mayberry 2014).

Two key innovations work hand-in-
hand to make this platform possible. 
Both stem from the insight that the major 
bottleneck of eye-tracking systems is the 
pixel acquisition – the cost of reading and 
digitizing the voltage output by the camera’s 
individual pixels. The time and power 
cost of acquiring a pixel is defined by the 
hardware being used, so we chose to focus 
our efforts on reducing the total number of 
pixels acquired. 

The first key innovation was the change 
from the high-rate, high-definition cameras 

used by traditional eye trackers to a small, 
low-resolution grayscale camera called 
the Stonyman, produced by Centeye, Inc. 
In addition to being small and operating 
at very low power, the Stonyman cameras 
allow for pixels to be accessed individually 
instead of row-by-row as in most traditional 
cameras. This feature facilitates algorithms 
that only require a subset of the camera’s 
total pixel grid. 

Designing such an algorithm was the 
second key innovation. We designed a small 
artificial neural network model that we 
could train to predict a user’s gaze location 
based on images of the eye. In order to 
reduce the number of input pixels (features) 
needed and thus realize a power savings, 
we applied L1 regularization to the neural 
net. In brief, this technique forces the model 
to discard those inputs that it deems least 
useful for the classification task in favor 
of those that are the most valuable for 
performing the task at hand. 

This neural network model is small 
enough to be run on the embedded proces-
sor onboard the glasses. We take advantage 
of the Stonyman’s random-access pixel 
feature and only sample the pixels speci-
fied by the neural network, saving power 
proportional to the number of pixels left 
unsampled. In our experiments we found 
that we discard 80% or more of the imager 
pixels, realizing an approximate power sav-
ings of the same magnitude.

CIDER: ENHANCING 
THE PERFORMANCE OF 
COMPUTATIONAL EYEGLASSES
While our initial results showed 
promise, they still did not measure up 
to the performance of traditional eye-
tracking devices, nor the ultra-low power 
requirements of true wearable devices. 
In order to push the performance of the 
iShadow platform even further, we revisited 
the problem of pixel acquisition.

Near-infrared (NIR) illumination can 
be used to make the distinction between 
separate regions of the eye – especially 
the pupil and iris – much clear to a 
camera device, as shown in Figure 2. By 

FIGURE 2. A near-infrared light (left), which is invisible to the human eye, highlights the pupil 
and the iris very clearly compared to a normal light source (right). 

Getting started with the iShadow
The iShadow glasses have to be 
calibrated for each new user one time, 
as the on-board neural network needs 
training data for the specific individual. 
This is a relatively fast process and, once 
completed, does not need to be done 
again for that subject. Here’s a brief 
overview of the steps involved.

1. Collect training video
The subject is fitted with the glasses 
and they are set to constantly record 
the wearer’s eye motions to a video. In 
order to ensure that the video has good 
coverage of the entire range of eye 
positions, we provide a tool that displays 
a rapidly moving target on a monitor. 
We recommend that subjects be seated 
in front of the monitor for two to three 
minutes while recording their eye motions.

2. Label video for training
Once the video is collected, it must be 
labeled for the supervised neural network 
training. We have built tools that facilitate 
rapid labeling of the position of the pupil 
in the video frames, in order to make the 
process straightforward.

3. Train the neural network parameters
After all of the labels have been 
generated, the video data and labels are 
passed into the neural network trainer. 
This can be located on a server or local 
desktop machine for speed.

4. Upload parameters
As soon as the neural network training is 
finished, the researcher can upload the 
parameters of the trained network to the 
onboard memory of the iShadow unit. As 
soon as this is done, the glasses are ready 
to begin eye tracking for that subject.
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including NIR illuminators in our device 
we significantly improved the quality of the 
images at minimal power cost, which opened 
up new possibilities in terms of efficient 
tracking algorithms requiring even fewer 
pixels than our original technique.

We implemented a multi-stage tracking 
algorithm as shown in Figure 3. The first 
stage is the familiar sparse neural network 
model, which calculates an approximate 
location for the center of the pupil with 
reasonable accuracy. This approximation is 
passed to the next stage, a computer-vision-
based technique that samples a single row 
and column from the Stonyman imager. It 
localizes the edges of the pupil within these 
regions and uses those to estimate the pupil 
position and dilation more accurately than 
the neural network. By passing the pupil 
position forward into the next iteration, this 
“cross model” is able to naturally track the 
movements of the eye at a fraction of the 
cost of the neural network, requiring only a 
few hundred pixels to be sampled.

It is possible that the cross model could 
lose track of the pupil, due to blinks or other 
occlusions. In this case the neural network 
is used to re-localize the pupil position 
and bootstrap the process once more. In 
this way the robust neural network model 
mitigates the brittleness of the faster and 
cheaper cross model to provide excellent 
tracking performance at low average power 
consumption.

In a new evaluation with 16 subjects, 
we demonstrated that the iShadow glasses 
running the CIDER algorithm can track a 
person’s pupil with an error of only 0.6° at 
a power draw of as little as 7 mW (A. Y.-F. 
Mayberry 2015). Thus, our system provides 

performance close to that of industrial 
tracking devices while meeting the ultra 
low–power standards of modern wearable 
devices. We hope that the iShadow will 
pave the way to new ways to study the 
human mind and new opportunities for 
augmented health and living. n 
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FIGURE 3. The CIDER algorithm pipeline: The neural network and cross 
model together form a two-stage controller for tracking the eye. 




