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This transition from acute to chronic treatment, paired 
with an extended life span, resulted in a healthcare system 
that is growing with unsustainable levels of cost (percent-
age of GDP). While this problem is evident in the US, it is 
also becoming an issue in developing countries.1 

In tandem with these changes, high-quality, user-
friendly wireless consumer devices, such as mobile 
phones, have emerged that accompany users most of the 
time. These devices provide not only mobile communica-
tion, but also sensing, analytic, and visual capabilities, as 
well as access to the cloud. Sensors embedded in a mobile 
phone, complemented by sensors on and in a body, can 
provide an unprecedented view of the person’s health 
status and behavior patterns. 

mHealth builds upon earlier work in telehealth, mobile 
computing, and persuasive technology in healthcare set-
tings.2 It has the potential to turn mobile devices into 
personal labs that continuously assess a person’s physiol-
ogy, behavior, social context, and environmental exposure. 
For example, a personal therapist application on a mobile 
device could mine the Internet for information about the 
latest health research and apply it while continuously col-
lecting personal health data to make inferences about the 
user’s health, and then share these results with caregivers 
so they can provide appropriate treatments. Persuasive 
user interfaces on the mobile device could facilitate com-
pliance with the prescribed treatment protocol by applying 
just-in-time intervention. In addition to directly improving 
healthcare, mHealth could also accelerate health research 
and inform the formulation of public health policies. 

R ecent advances in mobile technology have 
opened up enormous opportunities to improve 
patients’ health and well-being. mHealth tech-
nologies offer real-time monitoring and detection 

of changes in health status, support the adoption and 
maintenance of a healthy lifestyle, provide rapid diagnosis 
of health conditions, and facilitate the implementation of 
interventions ranging from promoting patient self-care to 
providing remote healthcare services. 

Although mHealth is a new area of scientific develop-
ment, researchers have been laying the groundwork over 
the past four decades. Medical practice and healthcare 
originated as a system to treat infectious diseases (such 
as smallpox) and traumatic injuries. As life expectancy 
increased, by the mid-1900s attention had shifted to manag-
ing chronic illnesses such as diabetes and heart disease. By 
definition, chronic illnesses are not expected to be resolved  
through treatment. 

Mobile health (mHealth) seeks to improve 
individuals’ health and well-being by con-
tinuously monitoring their status, rapidly 
diagnosing medical conditions, recogniz-
ing behaviors, and delivering just-in-time 
interventions, all in the user’s natural mo-
bile environment. 
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This vision of mHealth can be realized by building on 
recent advances in mobile technology, but the success of 
mHealth will require considerable innovation in funda-
mental science and engineering, as well as integration of 
the technology with healthcare systems. 

MOBILE HEALTH SYSTEMS RESEARCH
As Figure 1 shows, mobile technology can simulta-

neously acquire information, process the data, make 
inferences, mediate a range of interventions, and provide 
communications with other devices and systems.

Sensing in mHealth
To reach its potential, mHealth technology must be able 

to capture diverse personal and environmental signals 
relevant to the health of both individuals and commu-
nities. Researchers are repurposing a variety of sensors 
already included in mobile phones, such as accelerom-
eters and GPS technology, via sophisticated algorithms for 

use in mHealth applications, resulting in many innovative 
health-, wellness-, and fitness-related applications. How-
ever, the measured signals from these sensors often lack 
clinical relevance and fall short of the specificity needed 
to allow definitive diagnosis and treatment of complex 
health conditions. 

As interest in mHealth grows, we anticipate the increasing 
availability of sensors that are specifically targeted at and 
optimized for mHealth. In the short term, factors such as 
cost, market size, mass, volume, and placement constraints 
might necessitate using external sensors that are wirelessly 
connected to a smartphone. Over the long term, however, 
the need for a better user experience is likely to require in-
tegrating such sensing into smartphones or other emergent 
cellular-connected wearable devices such as eyeglasses. 

The core challenge lies in developing new sensors that 
are compatible with incorporation in a smartphone from 
a cost and size perspective, can be used for continuous 
real-time sensing without much burden on the user, and 
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Figure 1. An overview of mobile health systems. Sensors at the lowest layer collect raw data that is processed to make infer-
ences about individuals. These inferences can then be used to inform the design or delivery of just‐in‐time interventions and 
to make health inferences at the population level to inform health research, practice, delivery, and policy formulation.
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enable various tests that can only be done in a clinical set-
ting today. Biomolecular sensing, imaging, and bioelectric 
sensing are particularly important.

Biomolecular sensing. With their high selectivity, ultra 
sensitivity, and energy efficiency, solid-state sensors can 
turn a common smartphone into a powerful and easy-to-
use diagnostic tool.

Assessing biomarkers and pathogens in body fluids 
and human breath to detect diseases, their progression, 
and therapy effectiveness is essential in healthcare. Such 
sensing typically relies on sample preparation and labora-
tory analysis, which are not usually available in a mobile 
setting. Advancements in nanotechnology, microfluid-
ics, and solid-state sensors, however, offer the promise of 
miniature, low-cost, chip-sized sensors that can provide 
“lab-on-chip” capabilities. 

Examples include 

 • Nanowire sensors, which are fabricated at low cost 
in high-yield semiconductor foundries and packaged 
into disposable electronic strips.3 These embedded 
sensors can detect the presence of specific molecules 
such as cardiac troponins in a mobile setting to facili-
tate the diagnosis, monitoring, and risk stratification 
of suspected acute myocardial infarction in cardio-
vascular patients. 

 • All-electronic digital microfluidic devices operated 
by electrowetting-on-dielectric actuators, which can 
stimulate highly precise, programmable microreac-
tions to allow performing a wide range of assays in a 
mobile setting. 

 • DNA microarrays, which can capture the epigenetic 
information necessary to understand the protein-DNA 
interactions that underlie many biological processes 
and disease states.

 • Low-power solid-state chemical sensors, which use 
inorganic materials for potentiometric and resistive 
sensing of trace gases in human breath in real time 
and at low parts per billion (ppb) concentrations.  
Research has associated the presence of trace gases 
with various diseases, such as nitric oxide for asthma, 
acetone for diabetes, and hydrogen for gastroenteric 
ailments. 

Imaging. Passive and active imaging methods such 
as ultrasound, x-rays, MRI, and CT scans are mainstays 
of modern healthcare. However, factors such as optical 

pathway impose size constraints and the need to gener-
ate powerful or even dangerous signals (such as x-rays) 
or fields (such as MRI) make it impossible to embed them 
in a smartphone. Indeed, cameras are the only imaging 
devices widely available in a mobile environment. Using 
computer vision methods, researchers have incorporated 
smartphone cameras in mHealth applications to perform 
tasks such as detecting the heart rate from microblushes 
and estimating refractive errors in the eye. For imaging to 
scale in mHealth, it must move beyond the current human-
in-the-loop approach for interpreting images to perform 
computational triage. Two solutions are emerging that 
provide complementary capabilities.

The first one is lens-free computational microscopy 
and tomography4 running on a smartphone that can 
algorithmically overcome optical constraints to provide 
high-resolution 3D imaging of biological samples with 
a wide field of view and a large depth of field. These 
methods have been shown to assay blood samples for  
malaria.

The second solution is radio frequency (RF) imag-
ing, which is an attractive option for smartphones as 
they already have several built-in radio transmitters and 
receivers—for example, cellular, Wi-Fi, and Bluetooth—
that researchers can potentially repurpose. Wideband 
signals from an RF transmitter can penetrate and illu-
minate the interior of the human body, and the mobile 
device can analyze the interferogram image resulting 
from the reflected signal waveforms to infer a variety 
of internal variables, such as heart motion, blood flow, 
respiration, and fluid accumulation. Because RF imag-
ing is inherently contactless—that is, it does not require 
coupling transducers to the body via gels or fixed elec-
trodes—it allows unobtrusive, real-time physiological 
sensing. 

Bioelectric sensing. The measurement and analysis 
of surface biopotentials is a powerful, and often the only, 
sensing modality for diagnosing and monitoring many 
disorders. Examples include electrocardiography (ECG) 
for the heart, electroencephalography (EEG) for the brain, 
and electromyography (EMG) for muscles. 

Although devices for measuring surface bioelectric sig-
nals in mobile environments have been available for many 
years (Holter monitors, for example), they are too cumber-
some for long-term monitoring, which requires affixing 
multiple electrodes to the body. With ongoing develop-
ments in low-power electronics, smarter and compressive 
sampling, and energy harvesting, batteryless wireless 
patches could offer a less obtrusive bioelectric sensing 
approach that eliminates the tangle of wires and elec-
trodes.5 For sporadic monitoring, emerging contactless 
bioelectric sensors that use through-the-clothing capaci-
tive coupling could allow building the entire sensor into a  
smartphone.

For imaging to scale in mHealth, it must 
move beyond the current human-in-the-
loop approach for interpreting images to 
perform computational triage.
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Mobile computing for mHealth
An effective mHealth computing platform must be able 

to efficiently make semantically rich and medically trusted 
inferences about physical, physiological, psychological, 
cognitive, and behavioral states from sensor information, 
and correlate these inferences with environmental, social, 
and other factors.

Current mobile operating systems offer sophisticated 
network communications capabilities and provide appli-
cations with rich abstractions of communication patterns 
such as Web services. Rich networking stacks and frame-
works free individual applications from handling low-level 
data types such as bits, bytes, and packets or managing 
low-level protocols for media access, routing, and trans-
port. However, these systems provide rather primitive 
software support for sensory applications. mHealth ap-
plications are developed as ad hoc stovepipes handling all 
the system layers, from raw transducer signals to semanti-
cally rich inferences to actionable information. The lack of 
a standard approach is largely due to the failure to provide 
reusable and semantically rich abstractions of sensory 
information for mobile operating systems.

We envision the emergence of a “sensing stack” analo-
gous to the networking stack. The sensing stack might 
similarly be organized as a layered set of modules that 
systematically transforms sensor measurements into rich 
inferences that applications subscribe to. The sensing stack 
would have layers reflecting the needs of typical sensing 
applications: 

 • a bottom layer that samples front-end signal process-
ing to extract feature vectors, 

 • an inference layer that maps classifiers and recog-
nizers such as support vector machines (SVM) into 
semantic labels, and 

 • a top layer that extracts complex events from the time 
series of inference labels. 

Applications would access the stack via a suitable API. 
For example, an application might ask to be notified when 
the user is engaged in a particular activity or is in a particu-
lar behavioral state—for example, “running,” “stressed,” or 
“talking to Bob.” However, unlike networking stacks, which 
deal with relatively few network interface types, the sens-
ing stack would need to deal with many diverse sensors 
and corresponding processing.

Energy is another challenge. The realistic lifetime of 
current mobile phones when engaged in continuous sens-
ing is woefully short. As smartphones begin to use sensors 
for continuous inferencing, they will need sensing subsys-
tems for efficient sampling and duty cycling. In addition, 
the supporting architecture will need to be both efficient 
and high performance, providing dedicated sensor proces-
sors that applications can configure and program. 

Addressing the current shortcomings will require revis-
iting assumptions underlying the hardware and software 
organization of mobile devices, which are optimized for 
sporadic interactive computing and communication. For 
example, designers will need to optimize the analog- 
sampling-computation-communication chain using ad-
vances in adaptive and sub-Nyquist sampling,6 tiered 
processing architectures, in situ measurement of system 
performance to cope with environmental and platform 
variability affecting power performance, and emerging 
ultra-low-power wireless technologies. 

mHealth analytics
As the variety and availability of sensing and mobile 

computing technologies for mHealth increase, the data 
collected from the mobile environment will grow expo-
nentially; multiple sensors will continuously collect data 
at high frequency for the user’s lifetime. A major challenge 
is extracting actionable information and knowledge from 

this data deluge to provide accurate health information for 
users and professionals and help researchers and policy-
makers reach optimal conclusions. 

For the data to be useful in making health decisions, 
they must represent their provenance, quality, and validity. 
mHealth applications can use well-characterized data to 
make inferences using models of the relationship between 
the acquired data and the phenomena of interest. For ex-
ample, if the applications can estimate the uncertainties 
associated with the placement of the device relative to the 
user’s body, they can use the data obtained from a mobile 
device’s accelerometer to estimate an individual’s actions 
and activities. 

Data quality. Data collection in mHealth sensing intro-
duces various data-quality challenges. Sensors such as 
ECG electrodes might be placed incorrectly on the body, 
or, even if initially placed at the correct location, could 
subsequently slip or become detached. Sensor measure-
ments might be noisy not only because of placement and 
attachment errors, but also because of the variability 
inherent in a patient’s daily activities and the mobile envi-
ronment. Wearable wireless communication devices are 
convenient, but can be another source of signal distortion. 
Finally, a device might intentionally degrade data quality 
to conserve battery life. These issues call for new research 
in data quality.

Current mobile operating systems offer 
sophisticated network communications 
capabilities and provide applications 
with rich abstractions of communication 
patterns such as Web services.
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We need metrics to characterize the distortions and 
uncertainties associated with collecting the data and the 
resulting inaccuracy because decisions are based on that 
data. The specification of such metrics is an open ques-
tion. For example, can the metric indicate the inaccuracy 
expected in computing heart rate from a poor-quality ECG 
signal? Having the same or similar metrics for different 
sensors will make interpreting and processing the data 
much easier. But is a universal data-quality metric fea-
sible for a single sensor, let alone for different sensors? 
In an ECG, for example, can the same metric measure 
inaccuracy in computing both heart rate and heart rate 
variability? Metrics should preserve information quality 
even when the data quality varies.

We also need methods to restore data quality. These 
methods will need to not only detect data quality dete-
rioration, but also identify the deterioration source—for 
example, poor attachment or component malfunction—
and use this diagnosis to engage the sensor user in taking 
appropriate action to restore the data quality. 

Model-based inference. For mHealth data to be usable 
in making health-related decisions—for example, to initi-
ate a just-in-time intervention, alert a caregiver, or even to 
solicit more information via self-reporting, mHealth tools 
will need higher-level inferences regarding health status, 
behavior, and context. Such inferences require new com-
putational models that relate the observable variables to 
the quantities of interest. 

Researchers are making progress in inferring physical 
state (such as posture and activity using accelerome-
ters7), psychological state (such as stress using sensory 
measurements8), social context (such as conversation 
based on respiratory patterns9), and environment (such 
as place and commuting status using GPS). Significant 
work, however, is required to make these models and 
inferences reliable enough to use in the real world with 
a diverse sample of participants, so they can provide 
the basis for real-time inferences, decisions, and ac-
tions. A key concern is the potential for high false-alarm 
rates that can render the entire system annoying and 
ineffective.

Under limited circumstances, researchers can derive 
the computational models from principles such as bio-
mechanics.10 In most cases, however, they develop these 
models by combining principled approaches with machine 
learning and statistical pattern-recognition techniques. 
With this approach, however, the difficulty in obtaining 

representative labeled data limits the development of reli-
able and validated models. 

Although data collected in the lab might have valid labels, 
it might not represent the natural environment in which 
mHealth systems ultimately need to work.11 Labels collected 
in a mobile environment represent the natural environ-
ment, but they can be noisy, uncertain, biased, missing, or 
spurious. For example, researchers could use self-reported 
times of smoking to develop a model for automated de-
tection of smoking, but these labels might not accurately 
represent the actual start and end times of the smoking 
episodes. Subjects might forget to report an episode or might 
even falsely report it to earn compensation. The models 
for inferring health states must also account for between- 
subject differences and changes in context without requiring  
subject-specific training with the model parameters. 

Inference models should also adapt to changes in re-
source and data quality and be able to separate out the 
effects of various confounds. For example, having both 
ECG and respiration measurements available would im-
prove the models’ ability to infer psychosocial stress, but 
the models should work even if only one measurement is 
available. Further, activity, smoking, speaking, and so on, 
affect physiology. The model should therefore be able to 
demultiplex the effects of these and other confounding 
events to reliably infer the stress level. 

A model based on engineering, physical sciences, and 
health and behavioral sciences principles will have a better 
chance of addressing these issues and generalizing across 
subjects, contexts, and environments.

Design of mHealth interventions
Because mobile devices are usually continuously with 

an individual and have the sensing and computational ca-
pacity needed to collect and analyze health-related data in 
real time to infer health and behavior, they offer a powerful 
platform for delivering just-in-time adaptive intervention. 

A mobile device that is aware of an individual’s health 
status and environment can adjust an intervention’s 
content and timing accordingly. For example, if it can rec-
ognize vulnerable moments for a newly abstinent smoker, 
the device can deliver interventions to help resist the urge 
to smoke and prevent a relapse. 

Mobile devices could also adapt the intervention’s con-
tent to the vulnerability type (stress, alcohol, tobacco, and 
so on) as well as personalize the intervention to both the 
individual and the context (for example, “at work” versus 
“at home”). They could then apply their sensing capabilities 
to evaluate adherence and response to an intervention and 
use this information to adapt the interventions. 

In general, an intervention can be viewed as analogous 
to closing a loop in an automatic control system. In classic 
control system theory, the system derives the input con-
trol signal by comparing the desired output to the actual 

Mobile devices offer a powerful  
platform for delivering just-in-time 
adaptive intervention.  
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system behavior. Modern automatic control systems com-
pute the optimal control signal from the desired outcome 
and a learned computational model of the target system. 

Thus, achieving an optimal outcome for an intervention 
would require characterizing the human user’s behaviors in 
terms of a predictive computational model, which is an open 
transdisciplinary research problem. Capturing the com-
plexities, nonlinearities, and uncertainties associated with 
human response to interventions requires developing new 
predictive computational models for the controlled systems. 

In addition to developing an appropriate theoretical 
framework for control, researchers need simulation tools 
that leverage technological advances to create models that 
account for the many factors that determine health. They 
can then use both the theoretical model and simulation 
tools to analyze the safety and efficacy of mHealth inter-
ventions prior to conducting human user studies.

mHEALTH SAFETY, EFFICACY, PRIVACY,  
AND SECURITY 

Unlike other human-cyber-physical systems, where the 
human is just an operator, a sensor, or an actuator (such 
as in avionics or cars), in mHealth systems, humans are 
the “plant” whose health and well-being is to be affected 
and controlled. The life-and-death implications and the 
associated economic and legal burdens place a high degree 
of responsibility on mHealth system designers. Moreover, 
the human body is complex, highly variable, and not well 
understood. Thus, traditional computing verification and 
validation approaches are not particularly effective. 

Designing trustworthy mHealth systems requires ex-
tensive collaboration between engineering and health 
professionals to create and evaluate effective mechanisms. 
The overall goal of ensuring that mHealth systems are 
trustworthy comprises several dimensions.

mHealth safety
When assessing health products, the first question 

evaluators ask is whether the device, medication, or treat-
ment is safe. Likewise, researchers must ask whether an 
overall mHealth system is safe from both a health and an 
engineering perspective. 

From a health perspective, safety means the mHealth 
system produces information that is valid and of adequate 
quality for critical decision making. For example, given the 
rapid onset of a heart failure event and the potentially cata-
strophic impact of a missed detection, an mHealth system 
that predicts heart failure in patients with congestive heart 
disease must maintain high-quality information continu-
ously over an extended time period. For more advanced 
mHealth systems that might also trigger autonomous 
physiological and behavioral interventions, safety from a 
health perspective means that the interventions are medi-
cally safe and appropriate. 

From an engineering perspective, safety means that 
devices, such as sensors, used in mHealth systems will 
not cause their users unanticipated harm or discomfort 
because of design or manufacturing errors. For example, a 
wearable sensor with poor circuit and thermal design could 
lead to excessive heating or a battery fire. Engineering 
safety is not just a hardware matter—errors in the embed-
ded software are also a source of concern about safety. 
For example, faulty firmware in a defibrillator can cause 
unintended shocking, and an ill-designed user interface 
might confuse the user and elicit incorrect responses. Even 
when a device is functioning as engineered, the human 
body’s variability combined with ambient conditions can 
result in safety issues in unexpected contexts, such as in 
extreme environmental conditions. For a device to be safe, 
designers must address all of these factors.

mHealth efficacy
Efficacy—the evaluation of whether a device does 

what it claims, as well as for whom and in what context—
is crucial for devices used in health applications. Health 
researchers ask whether the device is valid, that is, it 
measures what it claims, and reliable, that is, it generates 
reproducible measurements. Although these are common 
healthcare issues, defining and assessing such metrics is 
difficult in a mobile environment. For example, what’s the 
best way to test the reliability of a device that is designed to 
assess temporal variability or address a concept’s validity 
for which there is no ground truth (stress, for example)? 
These issues call for new research and specific metrics.

The evaluation of health interventions usually occurs 
in multiple phases. Early in development, carefully de-
signed studies with individual patients (n-of-1 design) or 
small groups (pretest, post-test, or time-series designs) are 
useful. Researchers can use these studies to assess safety, 
feasibility, and usability and determine the interventions’ 
potential effect. 

Later in development, when an intervention is mature, 
the use of randomized clinical trials (RCTs) is common. 
To minimize biases, RCTs involve randomly assigning a 
large number (perhaps thousands) of potential participants 
to a treatment group and a control group, in which some 
participants receive a placebo. The RCT lets researchers 
estimate the treatment effects’ statistical significance and 
size. Although statistically sound, RCTs are generally ex-
pensive, inefficient, and lengthy. Other designs, such as 
regression-discontinuity and stepped-wedge, have similar 

Designing trustworthy mHealth systems 
requires extensive collaboration between 
engineering and health professionals to 
create and evaluate effective mechanisms.
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methodological rigor and might be suitable alternatives 
for mHealth. 

Because technology evolves rapidly in this area, freezing 
an intervention during evaluation, which usually lasts for 
years, is not feasible. Therefore, further work is needed to 
develop research designs suitable for evaluating mHealth 
interventions.12

mHealth privacy and security 
Patient information privacy has long been an area of 

concern in healthcare. Health information is managed 
under the 1996 Health Insurance Portability and Ac-
countability Act (HIPAA), which aims to ensure that the 
information remains private (by regulating the use and 
disclosure of data to various parties) and secure (by man-
dating administrative, physical, and technical safeguards 
against intrusion by unauthorized parties). Created in an 
era when health information had just begun to be digi-
tized, HIPAA could not have anticipated the many ways 
in which health information is now collected, exchanged, 
and processed. 

mHealth systems pose enormous challenges for HIPAA. 
One challenge comes from the openness of mHealth sys-
tems. Sensors, computers, and networks that collect, 
transmit, process, and act upon healthcare information 
are owned and operated by multiple parties with complex 
trust relationships and technical competence. Ensuring 
privacy and security in such a setting, while well under-
stood from a theoretical perspective, is difficult in practice 
where concerns of usability, cost, legacy, and conflicting 
interests intrude. 

mHealth systems pose an even bigger privacy challenge 
because the data they collect from wearable sensors and 
personal mobile devices presents fundamentally new risks 
and vulnerabilities.13 Embedded in this data, which users 
share willingly and often not anonymously with others, 
are many privacy-revealing behaviors such as addictive 
behaviors and movement patterns. Smart algorithms 
can fuse these behaviors with digital footprints—that is, 
information from other sensors and publicly available  
information—to construct a near-real-time virtual biogra-
phy of previously private behaviors and lifestyle patterns.

Although certain architectural principles, such as giving 
individuals more control over the data that sensors collect 
about them, have begun to emerge, designing mHealth 
systems that are sensitive to the needs of both producers 
and consumers of information remains an open challenge. 
Privacy-preserving mHealth systems would need to go 
beyond the traditional focus on data and identity privacy 
to providing behavior privacy. 

In addition, because mHealth systems are continuously 
connected to the network, they are more vulnerable to 
tampering and jamming of sensing and communication 
functions by third parties, resulting in denial of service 

and incorrect operation that could cause medical harm 
and threaten users’ well-being.14

mHEALTH REGULATION 
In the US, mHealth devices come under the regulatory 

authority of the Food and Drug Administration (FDA). In 
mHealth, as in other healthcare areas, the FDA regulates 
products that are intended for medical use. Products can 
include software, hardware, and devices that combine 
them. 

The intent of the person or vendor who develops or sells 
a product gives it a medical-use quality. Some items, such 
as artificial heart valves, clearly have an intended medical 
use. But, when there is less than 100 percent clarity about 
intended use, the FDA considers a vendor’s words, actions, 
and recommendations to customers to determine intended 
use. For example, if a vendor promotes an mHealth prod-
uct such as a sensor or a mobile app as a sleep aid, the FDA 
can label it as a wellness device rather than as a product 
for medical use. If the same technology is marketed as a 
treatment for a sleep disorder, it will likely have a medical- 
use quality. In this case, the device will be subject to regu-
lation and must be tested and evaluated using the FDA’s 
scientific standards and processes. While using a product 
beyond its approved uses is not illegal, promoting it for 
something beyond what it is approved for is. The FDA is 
allowed some regulatory discretion; it can choose not to 
regulate something or can classify it for a specific type or 
level of regulation. 

In 2011, the FDA released draft guidance for mHealth,15 
and it now has congressional authority to formalize the 
guidelines. 

Multiple US federal agencies that touch on various 
aspects of mobile computing also regulate and govern 
mHealth. This includes the Federal Communications 
Commission (FCC), which governs wireless operators and 
spectrum, and the Federal Trade Commission (FTC), which 
regulates interstate commerce and works for consumer 
protections, including mobile data security. Additionally, 
mHealth operates within the frameworks of other federal 
agencies that address mobility issues within the greater 
healthcare and standards systems. This includes the Office 
of the National Coordinator for Health IT, which provides 
guidance and support for the nation’s health information 
technology infrastructure, and the Department of Health 
and Human Services’ Office for Civil Rights, which is re-
sponsible for implementing and enforcing HIPAA. These 
agencies work together to regulate and guide the mHealth 
domain.16

m Health systems herald an exciting new era in 
health with a shifting focus of healthcare to well-
ness and prevention. These devices also portend 

a transformed health research environment, where most 
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data is collected remotely and entire clinical trials might 
be run without the researcher and the participant ever 
meeting face to face. The data from these systems, in 
combination with the multiple fixed sensors in the envi-
ronment, will also create a rich database for exploring 
new ways of understanding health. Thus, as mHealth 
systems become more prevalent and versatile, their use 
will not only enable myriad disruptive transformations 
in healthcare delivery and medical research, but will 
also present many scientific, engineering, and regulatory 
challenges. mHealth’s success will, therefore, depend on 
transdisciplinary research collaboration among comput-
ing, engineering, and medical researchers. 
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