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Abstract Cyber-physical systems, with their focus on creating closed-loop sys-
tems, have transformed a wide range of areas (e.g., flight systems, industrial
plants, robotics, etc.). However, even after a century of health research we still
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lack dynamic computational models of human health and its interactions with the
environment, let alone a full closed-loop cyber-physical system. A major hurdle to
developing cyber-physical systems in the medical and health fields has been the
lack of high-resolution data on changes in both outcomes and predictive variables
in the natural environment. There are many public and private initiatives addressing
these measurement issues and the health research community is witnessing rapid
progress in this area. Consequently, there is an emerging opportunity to develop
cyber-physical systems for mobile health (mHealth). This chapter describes research
challenges in developing cyber-physical system models to build effective and
safe mHealth interventions. Doing so involves significant advances in modeling
of health, biology, and behavior and their interactions with the environment and
response of humans to the mHealth interventions.

Introduction to mHealth Cyber-Physical Systems

Recent advances in mobile health (mHealth) technology have opened up enormous
opportunities for scientific advancement and development of new tools that may
improve patients’ health and well-being. mHealth technologies offer real-time mon-
itoring of both health outcomes and predictive variables at timescales varying from
infrequent to continuous, to detect changes in health status, support the adoption and
maintenance of a healthy lifestyle, provide rapid diagnosis of health conditions, and
facilitate the implementation of interventions ranging from promoting patient self-
care to providing remote healthcare services. However, to realize the potential of
mHealth, significant innovations in computing are needed. The availability of new
means for continuous behavioral, biological, physiological and social monitoring
in combination with ecological momentary assessment (EMA) self-reports and new
channels for delivery of interventions/treatment provide the basis for a radical new
class of cyber-physical systems to improve health [1, 2].

Cyber-physical systems are defined as “engineered systems that are built from,
and depend upon, the seamless integration of computational algorithms and physical
components” [3]. Often cyber-physical systems are referred to as closed-loop
systems because the measurement, actuation and control is all done automatically
by complex and dynamic computational models. An example of a cyber-physical
system in health is the artificial pancreas which measures the body’s glucose and
then administers a balance of insulin and glucagon to keep the body’s insulin levels
in balance without human input [4].

More recently, people have begun to discuss human-in-the-loop cyber-physical
systems because the measurement and activation can be done automatically, but
the control of the intervention needs to be done by a human. An example of
these systems could be an emergency room sensing system which collects all the
patient information and merges it with the electronic health record data. When
there is a change in status (e.g., a precipitous drop in blood pressure), the health
care team (i.e., human-in-the-loop) is notified to intervene. The intervention (e.g.,
administration of drug, fluids, etc.) that the team administers is also logged in
the system and then the effects are monitored, thus closing the loop. Over time,
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this system will “learn” which interventions have the desired effects for the events
sensed. Thus, while it will start as a human-in-the-loop cyber-physical system, over
time it may become a closed loop for some interventions.

Mobile cyber-physical systems might be developed to measure and model
relevant behaviors and the varied influences on health behavior, e.g., emotional,
cognitive, physical, social, biological and environmental. These could be used to
develop formal methods for identifying, quantifying, modeling, retaining, repur-
posing or rejecting variables in a model of any individual’s health behaviors. Such
health-related cyber-physical systems have the potential for low-cost data capture,
model-based approaches for analytics and closing-the-loop interventions/treatments
that are personalized, contextualized, delivered just-in-time (i.e. when and where
needed), and ecologically valid. Implementing policy through data driven and
quantitative models will provide increased transparency, efficiency and safety in
person-centric and population-wide health and healthcare.

As an example, consider just-in-time interventions as a showcase of the com-
puting research challenges. Just-in-time interventions (JIT) are a long-standing
component of cyber-physical systems and are the next evolution of behavioral
interventions in personalized and precision medicine [5–7]. Current perspectives
of personalized medicine focus on tailoring the intervention based on the patient’s
genetics, socio-demographics, stage of change, or other baseline variables. JIT
extends its intervention tailoring beyond baseline status and by sensing status
changes, the cyber-physical system is actuated and adjusts or adapts the intervention
over the course of the intervention [6].

The concept of adapting treatment to the patient’s current state and situation
is not new. Clinicians have been adapting interventions for decades in an analog
manner based on clinical judgments of a patient status at each visit. What has
not happened in the conventional health model is to close the loop and measure
the immediate and sustained effect of the intervention the provider prescribed. A
patient could get better, die, be admitted to the emergency room or see another
doctor for a completely different medical or non-conventional treatment without the
original provider knowing of any changes. Thus, the ability to adapt interventions
using cyber-physical systems to automatically sense on a nearly continuous basis
by employing a range of adjustment variables including current physical state,
environment, social context, and responses to prior intervention attempts [6] closes
the loop in the system.

This chapter explores the research challenges in building mHealth cyber-physical
systems. Although intuitively appealing as an improvement over current inter-
vention approaches, there are numerous challenges to implementing mHealth
cyber-physical systems. We identify three challenges to establish a scientific agenda
for research on health-related cyber-physical systems to develop methods and
systems for acquiring low-cost, high density data needed for modeling, integration
of critical variables into model development and developing accurate models for
cyber-physical system development.
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Acquiring Low-Cost, High Density Data for Model
Development

The current approaches for data capture ‘in the wild’ (i.e. ambulatory) are ad hoc
and fragmented, often obtrusive and not easy to use, with little standardization
on the interfaces and annotation, which lend themselves poorly for model-based
analytics [8].

For each health-related need, determining which data should be sampled, at
what rate and which are good enough data to assess context (emotional, cognitive,
physiological, biological, social, and environmental) and state inference is an
essential first step. This first step requires temporally dense and accurate data with
minimal patient burden. Indeed if a participant has to keep manually inputting
data [9], then the participant is likely to become disengaged and non-adherent.
Passive sensor data offer promise to deliver some of this data, but more research
and development is needed to provide comprehensive and field-tested sensing of the
relevant adjustment variables, and integrating and making sense of these data.

This first ‘step’, which probably comprises of many ‘steps’, will need scientists
from across disciplines to identify what needs to be, as well as what can, be
measured [10]. Determining what to monitor (from among a vast array of possible
behaviors and influences) and how frequently to monitor (i.e., what are valid
segments or sampling time-frames) will provide a basis to our understanding of the
specificity and elasticity of different influence factors in individual health-related
behavior, health promotion, and treatment. Identifying how uncertainty in data (due
to measurement, estimation and training error) affects individual model accuracy,
and how that in turn, affects closed-loop feedback in terms of signaling, intervention
and behavioral change, will be key.

To support this infrastructure, we need to establish data and metadata capture
standards, standardize interfaces and annotations; and provide controllable privacy
for repositories. Given the prevalence of data from low cost sensors that are
intermittent and of poor quality [8], developing delay tolerant network architectures
to deliver data with minimal information loss is vital to the scalability and credibility
of the data capture system. Further, as new sensor technologies and sources of data
become available, sensor fusion algorithms that are cognizant to the timescales,
contexts and criticality of the use of this data (i.e., accuracy required for electro-
physiological pacing vs. dietary intake over more relaxed timescales) are necessary.

New Experimental Designs to Guide Data Collection for Model
Development

To accurately model a closed-loop cyber-physical system, appropriate data must
be on hand. But these appropriate data need to not only include high quality data,
but data at the correct timescale and at the appropriate granularity. These data could
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reveal at what frequency the phenomena should be or could be (in the case of patient-
generated data) collected. How the data collection impacts the phenomena under
study and how the humans in the loop can be incentivized to use the system so that
functions optimally.

An example of this arises in the physical activity literature where efforts have
been made to identify which prompts are most helpful and how often they might
be delivered before they have an adverse effect (e.g., [11]). Generating new
experimental designs geared to populate these models would provide the data and
validation for new cyber-physical systems. The focus could be on idiographic
(i.e., single-subject) experiments, such as system identification experiments [12],
appropriate for idiographic or group-level estimates of phenomena such as time-
varying moderation of an intervention, such as micro-randomized trials [11] that are
informative, recognize participant limitations and phenomena, etc. While research
efforts have already begun in this domain, additional research is required to identify
the duration of these experiments, and how many participants may be required to
understand between participant variability [13].

Identification and Integration of Critical Variables into
Closed-Loop Models

Along with a need for high quality data, is the need for the identification and
understanding of the full range of critical variables in these cyber-physical systems.
With the development of multi-scale models, we need to develop closed-loop
approaches that consider the individual context, dynamics, physiological condition
and environment effects to ensure interventions are safe and effective. Further,
new models should move beyond specific areas of health and integrate models of
biopsychosocial processes.

Physiological, biological, behavioral and social factors are intertwined, and
measures can shed valuable light on emerging health risks and potentially serve
to build complete cyber-physical systems. In order to inform prediction of risk,
modeling the dynamic interplay of these systems is critical. Multiple modes of
delivering individual-specific feedback need to be explored with an appreciation
of the tradeoff between invasiveness and effectiveness.

While exploring automated (closed loop) or semi-automated (human-in-the-
loop) feedback approaches, it is important to consider the extensive literature in
health behavior change. Furthermore, new ‘variables’ will emerge because we are
capturing behavior and its influences with unprecedented density and in new ways
[10, 14].

Interdisciplinary collaborations between computer scientists, engineers, and
biobehavioral researchers will be required to tease out these new variables, and
access their usefulness in the dynamic modeling of ongoing health-related behavior.
Therefore, the integration of computational models with semantically informal
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observations on individual behavior that have direct linkages to control frameworks
are essential to the success of closing-the-loop on individual-specific interventions.

Developing Appropriate Model-based Approaches for
mHealth

Identifying ‘good’ models and modeling techniques (across the spectrum of
regression-based statistical, purely data-driven black-box models, reduced-order
grey-box models and complex high-order glass-box) is an essential building block
for cyber-physical systems to incorporate the dynamics, context and environmental
conditions in determining the appropriate level of intervention. A statistically
rigorous framework is required for model training/tuning with minimal data to
minimize false positive/negative alarms. This will not only reduce the overhead
of monitoring a large population of individuals in the wild, but also provide a
minimum level of credibility in the decision support service. It will also let us
model uncertainty (beyond standard additive and multiplicative bounded-input,
bounded-output disturbances) and acknowledges the inherent complexity and time
variant structure of biobehavioral processes.

Despite the successes of the data-driven approaches, the complexity of human
behaviors currently limits their generalizability and predictive power. In contrast,
principle-based or mechanistic models frequently studied in laboratory environ-
ments characterizing the underlying neurophysiological, biomechanical and psy-
chological processes may not have the capability to account for the uncertainties and
diversity of contexts in the wild. When mechanistic models alone are not feasible or
do not provide a complete account of the phenomenon, it is useful to combine data-
driven approaches with the mechanistic models as regularizers forming so called
data assimilation approaches that have been successful in a number of application
areas [15].

To support this cyber-physical systems approach for person-centered and
population-wide health, we will need to develop open model repositories for
competitive analysis of feature identification, classification and matching with
an appropriate feedback approach. While all models may be considered to be
flawed because they do not perfectly reflect the real world, some models are useful.
Detailed models allow us to use high-fidelity simulations that take real system
dynamics into account in designing interventions for any person. After developing
these individual based models, we can perturb the model parameters and inputs to
generate a large number of virtual models for parametric model-based interventions.

Ultimately, these efforts will let us build models for cyber-physical systems that
do not have to predict perfectly, but “good enough” for the end-use application. For
example, if the target is control of blood pressure, one might create or deploy a
model that predicts blood pressure values within a range that is considered safe
rather than pinpointing specific blood pressure value. This model will create a
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more generalizable and understandable intervention for a cyber-physical system and
one in which the model can learn about responses for each individual. Further,
explicit use of models in which good enough is explicitly identified will allow
practitioners/scientists to make effective use of these models, and be able to develop
these automatically (or via a guided manager) without having to be experts in the
underlying technology.

Modeling Safety in mHealth Cyber-Physical Systems

An overarching goal of mHealth research is to create the tools that support systems
and individuals so that people can live healthy, fulfilled lives. But, ensuring safety
of the user and efficacy of the intervention are equally important.

This section highlights the research challenges in dealing with safety in mHealth
cyber-physical systems. These issues include: ways in which researchers can capture
adverse events and potential points of danger in model development; methods by
which sub-models around safety, effectiveness and burden can be merged to create
true closed-loop systems and the need to develop models based on both experimental
lab data and those collected in the wild.

Capturing Risks to Enhance Safety

At present, mHealth systems, particularly interventions, are not balancing the need
to be safe, effective, and fit into a person’s life. A core stumbling block, particularly
with clinical populations, is that the models that are developed around each of
these metrics of optimization (i.e., safety, effectiveness, and usability) are largely
developed within siloed research areas.

Further, for each of these metrics to be optimized they have idiosyncratic model-
ing requirements and constraints placed upon them. For example, related to safety,
closed-loop models are being developed that can provide a better orchestration of the
medical cyber-physical systems within hospitals that contribute to improved patient
management.

An example of this would be a cyber-physical system for medication regulation.
The system would sense the variables of interest, actuate the system when the
medication is to be taken (either by prompting the patient or directly releasing the
medication into the system) and then monitoring the patient and system’s response
to the medication. This will allow for better administration of medications, as well
as determine for whom and when is the medication effective. Important to this work
is articulating best strategies that can foster model generation, particularly by taking
advantage of moments of exploration for improving the model for an individual as
opposed to simply exploiting the model for increasing safety.
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The core problem is that these points of exploration are, by design, moments
when the risk of detrimental outcomes are greatest. Thus, in the medication regu-
lation example above, adverse reactions to the medications are highly informative
for model development and tuning, but not for the patients. This issue presents a
fundamental research challenge of how to fully populate the model to asses both
safety and burden. Thus, this challenge requires a balance of experimental data
and real world observation (e.g., from mHealth data or electronic health records)
to create models that fully encompass safety and effectiveness.

Merging Sub-models of Safety, Effectiveness and Burden

The problem of model generation where each of the sub-models is developed
individually and the issues are not aggregated into a complex model is common in
mHealth. For example, work is currently underway to develop closed loop systems
for Type I diabetes management that balances glucose levels via the delivery of
insulin and glucagon [4]. Interestingly, the current work largely ignores human
behavior (e.g., food consumption, activity, sleep patterns), with the implication that
the human provides too much noise to provide appropriate signals for creating safe
and reliable systems (and thus potentially introducing a large safety risk when an
individual engages in actions that are outside of the constraints of the closed loop
controller). However, if human behavior is ignored here, the loop can never be truly
‘closed’, but it will rather be ‘leaky’, with the model endlessly trying to extract the
monkey wrench that poor human health behavior throws into the works.

Other examples of this safety versus effectiveness siloeing is currently underway
within the realm of mHealth behavioral interventions that are explicitly trying to
model the balance between effectiveness and usability. For example, Hekler and
Rivera [6, 12, 16] are currently working to develop a robust cyber-physical systems
focused on increasing walking among otherwise healthy individuals. By design,
the focus within this cyber-physical systems effort is modeling the dynamics for
determining exactly when, where, how, and how much to intervene for promoting
and increasing walking. Since walking, particularly among healthy individuals is
effectively “safe”, safety is largely ignored in the current phase of research.

Finally, when safety is considered, the measurement device, software, and
systems must also be considered in the context of other cyber-physical systems. For
example, between 1990 and 2000, 600,000 devices for pacemakers and implantable
cardioverter defibrillators were recalled by the Food and Drug Administration
(FDA) because of issues in the software systems [17]. As Jiang [12] notes, in the
device development process, the FDA does not look at code, but, instead, explores
the medical outcomes. Given the many software issues that can disrupt these cyber-
physical systems, the mHealth research community needs to integrate formal and
functional models that will allow us to know exactly how a system is functioning,
so that we can identify system issues before they affect safety.
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Using Experimental and Real World Data to Enhance Models
of Safety

An example of how multiple sub-models have been merged can be found in one
common cyber-physical systems, the pacemaker. To develop an effective cyber-
physical systems to address abnormal heart rhythms, a model of what the heart
does and how it works had to be developed. Researchers used electro-physiological
signals and then mapped the signals to timers. They captured these into nodes
and paths to see progression of the system over time and actually captures the
physiological phenomena of the heart. These data were merged with information on
abnormal heart events (e.g., when the heart was malfunctioning). With these data,
researchers and physicians could examine the conduction pathways and model the
natural timings of the heart.

These models lead to the development of the closed-loop strategy the pacemaker
uses for interrupting conduction and correcting the signals of the heart. This allowed
for formal and functional validation of the pacemaker. Thus to enhance effectiveness
and safety, we need a model based on the desired level of complexity. This is because
there is no single “golden” model, but instead multiple models that build on the
complexity inherent in human systems.

Over time, it is likely that more complex models will be chosen, but researchers
can take advantage of model simplifications and increasing complexity to help
identify the ambiguities for poor responses within the system. This allows for a
debugging strategy to increase confidence in the software. For the pacemaker, this
model-based framework can be verified through all the possible interactions with
the heart [18], including the code for a pacemaker process to ensure reliability,
effectiveness and safety.

Thus, creating safe, effective, and usable mHealth interventions will require the
development of robust dynamical sub-models for optimizing each outcome (e.g.,
usability, safety, and effectiveness) that can then be combined. The development of
these sub-models, particularly those that can then be combined is no simple task.
For example, the dynamical models for physical activity and eating currently being
developed by Hekler and Rivera and others [6, 12, 15, 16] could likely provide
valuable insights for improved management of diabetes, particularly when comple-
mented with a continuous glucose monitor and an insulin pump that incorporates
delivery both of insulin and glucagon. Integrated models will also support model-
based clinical trials for implantable cardiac devices that will let researchers have
confidence in a cyber-physical system before a trial begins in humans. Much more
work is required both for developing sub-models on safety, security, usability, and
effectiveness, and on techniques for composing them into models that can be used
to analyze and balance the competing interests [19].
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Conclusion

This chapter highlights the some of the research challenges in generating effec-
tive mHealth cyber-physical systems. Many research challenges are apparent and
include the development of valid, temporally dense and precise data collection
systems with minimal patient burden. They also require the development of new
dynamical models of health that can be deployed in both fully closed-loop cyber-
physical systems in which all of the control decisions are made by the system and
with human-in-the-loop, semi-closed loop systems where activating and deactivat-
ing the system under specific conditions is controlled by a human (user, care team,
etc.). Creating either type of cyber-physical systems requires an understanding of
effectiveness and safety, based on the quality of the data and compromises inherent
in giving the user control. Over time, these cyber-physical systems will evolve to
handle the unpredictability that are the results of poor data or user error.

Advances in mHealth cyber-physical systems also usher in the just-in-time (JIT)
interventions that can help realize the promise of personalized medicine. These
changes will also move us to models of interventions that can be tested in-situ
before they are deployed in humans at both great cost and potential risk. The models
inherent in these cyber-physical system should also speed up the evaluation process
and allow effective systems to be deployed much faster than is currently possible
in health. Overall, the future of mHealth cyber-physical systems is clear as a way
forward to both improve health, increase safety and speed up the evaluation process.
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