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ABSTRACT
Mobile devices have become an essential part of our daily
lives. By virtue of both their increasing computing power
and the recent progress made in AI, mobile devices evolved
to act as intelligent assistants in many tasks rather than
a mere way of making phone calls. However, popular and
commonly used tools and frameworks for machine intelli-
gence are still lacking the ability to make proper use of
the available heterogeneous computing resources on mobile
devices. In this paper, we study the benefits of utilizing
the heterogeneous (CPU and GPU) computing resources
available on commodity android devices while running deep
learning models. We leveraged the heterogeneous comput-
ing framework RenderScript to accelerate the execution of
deep learning models on commodity Android devices. Our
system is implemented as an extension to the popular open-
source framework TensorFlow. By integrating our acceler-
ation framework tightly into TensorFlow, machine learning
engineers can now easily make benefit of the heterogeneous
computing resources on mobile devices without the need of
any extra tools. We evaluate our system on different android
phones models to study the trade-offs of running different
neural network operations on the GPU. We also compare
the performance of running different models architectures
such as convolutional and recurrent neural networks on CPU
only vs using heterogeneous computing resources. Our result
shows that although GPUs on the phones are capable of of-
fering substantial performance gain in matrix multiplication
on mobile devices. Therefore, models that involve multi-
plication of large matrices can run much faster (approx. 3
times faster in our experiments) due to GPU support.
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1. INTRODUCTION
Recent developments in artificial intelligence and machine

learning have made huge leaps in the accuracy of machine
perception algorithms in different domains such as object de-
tection [16], speech recognition [13], and natural language
understanding [10] . A lot of this progression comes due to
the renaissance of deep neural networks (a.k.a. deep learn-
ing [12] ) methods. Running the deep learning model locally
- on device - saves the time and money spent on sending data
to remote servers and reinforces the user privacy. However,
running deep learning models involves a massive amount of
calculations. Therefore, a lot of applications prefer to send
the data from the mobile device to remote servers where the
model runs and sends the result back to device despite the
obvious benefits of running the models locally on mobile de-
vices. Therefore, an easy to develop with accelerated deep
learning framework on mobile devices becomes a necessity.

Although popular deep learning frameworks (e.g. Caffe [15],
Torch, Theano [8], and TensorFlow [6]) accelerate the com-
putation of deep learning models by utilizing heterogeneous
hard-aware (CPU / GPU) resources and even custom hard-
ware accelerator such as tensor processing units (TPU) used
in Google data centers. When running the mobile device ver-
sions of these frameworks (e.g. Caffe Mobile [2], Torch An-
droid [5], and TensorFlow for Android [4]), we observe that
all of them run entirely on the device CPU. In this paper, we
introduce RSTensorFlow an extended version of TensorFlow
that supports heterogeneous computing resources for com-
modity Android devices. RSTensorFlow is implemented by
modifying the kernels of TensorFlow operations to leverage
the RenderScript heterogeneous computing framework on
Android devices. As a result, running models with RSTen-

sorFlow will seamlessly utilize the power of available compu-
tation resources while running models trained with Tensor-

Flow without requiring the use of any other external tools.
In this paper, we make the following contributions:

1. we introduce and implement RSTensorFlow a modified
version for TensorFlow that supports both CPU and
GPU on commodity android devices.

2. We benchmark and evaluate the trade-offs of running
common deep learning operations (namely matrix mul-
tiplication and convolution) on CPU vs GPU on com-
modity android phones.
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3. We benchmark and evaluate the trade-offs of running
different model architectures for common tasks (namely,
image recognition and gesture recognition) on hetero-
geneous computing resources.

4. we provide our framework RSTensorFlow as an open-
source project1 for the research community.

Although recently research was done on using other com-
puting resources on mobile devices for accelerating the run-
time of deep learning models (e.g. DeepX [17], CNN-Droid [19]),
these frameworks are either proprietary and not available
for the community, or requires specific hardware devices and
does not integrate well with the existing popular deep learn-
ing frameworks such as Tensorflow.

We evaluate the performance of our system on different
Android devices (Nexus 5x, Nexus 6). We notice that ma-
trix multiplication operations gain significant speed when
running on GPU, given that matrix size is big. As a result,
we notice up to 3 times speedup in running the inception
model on Nexus 5X phone. On the other hand, we notice
that convolution operation runs on CPU faster than GPU.
Therefore, optimizing convolution operation to run mobile
phones GPU remains an interesting research goal.

The rest of this paper is organized as follow: Section 2
provides a summary of the related work, Section 3 provides
a brief background about deep learning and the Render-

Script framework. Section 4 has our system design and
implementation details. Section 5 lists our experiments and
evaluation results. Finally, Section 6 concludes the paper.

2. RELATED WORK
In desktop/server environments, GPU vendors provide ac-

celerated computing libraries for developers such as cuBLAS [21]
and cuDNN [9] from Nvidia and AMD Core Math Library
(ACML [7]). These libraries provision useful primitive for
deep learning engineers to utilize accelerated computing in
their frameworks. However, unfortunately there are no equiv-
alent primitives libraries provided by mobile GPU vendors.
Although, OpenCL existed for a while as an industry stan-
dard for heterogeneous computing that supports mobile de-
vices. Unfortunately, OpenCL is no longer officially sup-
ported on most android devices. As a result the current
versions of Deep-learning frameworks running on mobile de-
vices: Caffe Mobile [2], Torch Android [5] run only on CPU
without acceleration. TensorFlow [6] also supports running
on different mobile and embedded platforms: Rasberry pi,
iOS and Android. In Android TensorFlow also runs on the
device CPU while making use of low-precision quantized ma-
trix multiplication library GEMMLowp [3] to provide faster in-
ference time and reduce the memory size of the model. How-
ever, it still does not make use of the mobile device GPU.

Recently, different research efforts considered the accel-
eration of deep learning framework running locally on mo-
bile devices. For example, DeepX [18] accelerates the deep
learning inference on mobile devices by using the DSP, GPU
and using runtime layer compression to decompose the deep
model across available hardware resources. However, in their
paper results, DeepX [18] used the GPU only on the Nvidia
Tegra K1 Soc and relied on using DSP on the more popu-
lar Snapdragon Qualcomm SoC. Also, DeepX is not avail-
able for the public developers to use and does not integrate

1https://nesl.github.io/RSTensorFlow/

within popular deep learning frameworks. However, possible
future work would be to make use of the model compression
and decomposition algorithms proposed by DeepX to further
improve our implementation.

In comparison to recent work by [20] which also used Ren-

derScript framework to accelerate the runtime of convolu-
tional neural networks on mobile devices. Although they
report very impressive speed up gain (more than 200x) by
using RenderScript, this result is magnified due to the fact
that they are comparing their RenderScript-based convolu-
tion against their own java serial implementation of convolu-
tion operation. However, we have the same advantage of us-
ing RenderScript but we compare ourselves against Eigen [14]
library which is the state of art of optimizing deep learn-
ing models runtime on top of ARM NEON SIMD instruction
set. We also accelerate other important operations, namely
matrix multiplications. Therefore, our RSTensorFlow can
be used to accelerate other models than convolution neural
networks. Finally, our system can be used to run models
trained with TensorFlow out of the box without any model
conversion or preparation as needed by [20], and [18].

3. BACKGROUND

3.1 Deep Neural Networks
Neural networks are a sub-class of machine learning mod-

els that are loosely inspired by how the human brain func-
tions. The computation model for neural networks consists
of layers of transformations applied to input data to approx-
imate a target function. Deep learning uses a large number
of hidden layers to learn a hierarchical representation of the
input data in order to increase the model accuracy. Deep
learning methods can be broadly classified into major model
types including:

Feed forward neural networks: also called multi-layer
perceptrons (MLPs), are the fundamental form of neural
network. MLPs have no feedback connections, therefore in-
formation flow from one layer to the next one. The layer
output Y is computed as the result of applying a transfor-
mation of the input X (multiplying it by weight vector then
adding a bias value), then applying a non-linear activation
function σ to it. Commonly used activation function include:
the sigmoid function, tanh function, and the rectified lin-
ear unit relu function. Implementing a feed-forward (fully
connected) layer involves a matrix multiplication operation.
Since both input X and output Y are usually represented as
matrices containing several (batch) examples together and
the weights matrix W is also a matrix representing the input
weights of different units within the same layer.

Convolutional neural networks (CNNs): are spe-
cialized versions of MLPs that are currently the state of art
model architecture for image recognition tasks. ConvNets
are similar to MLPs but ConvNet models start with groups
of convolution and pooling layer pairs.

Recurrent neural networks (RNNs): are neural net-
work models with feedback loops that give them an advan-
tage for modeling patterns in sequential data with variable
lengths. They are widely used for different time-series ap-
plications such as language translation in natural language
processing (NLPs), time-series forecasting, and classifying
sensors data.
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3.2 TensorFlow
TensorFlow is a widely used framework for machine in-

telligence. It was originally developed and used by Google
internally, until it was released as open-source project in
2015. TensorFlow represents a model computation as a data-
flow model in the form of a directed graph. The graph is
composed of a set of nodes that represent operations while
edges between the nodes are tensors holding arbitrary di-
mensionality arrays of values. TensorFlow relies mainly on
the Eigen [14] and cuBLAS [21] as a library for underlying
linear algebra subroutines. On commodity Android devices,
Eigen [14] is the library being used. While Eigen is very
well optimized library for running on ARM processors using
the ARM advanced SIMD instruction-set (NEON), it does not
make use of other heterogeneous computing resources such
as GPU and DSP.

Recently a cooperation between Google and Qualcomm
has lead to adding Qualcomm Hexagon 682 DSP support
to TensorFlow. Hexagon 682 DSP is an integrated part of
the Snapdragon 835 SoC. According to official statement
form Qualcomm, running TensorFlow on DSP is 25X times
faster and 8X energy efficient than running on CPU. How-
ever, phones with Snapdragon 835 are not launched market
yet.

3.3 RenderScript
Google introduced RenderScript [1] as a framework for

running computationally intensive tasks at high performance
on Android. RenderScript parallelizes the computation work-
loads across CPU cores and GPUs. It is commonly used to
accelerate image processing and computer vision algorithms
on mobile phones.

Developer express their data parallel tasks in terms of
compute kernels with RenderScript code using a c-99 lan-
guage in .rs files. RenderScript framework executes kernels
in parallel across different data points and will distribute
the execution across the available heterogeneous CPU cores
and GPUs. During the build time, this code is compiled
into an intermediate bytecode using llvm compiler. Android
build tools also generate a reflected class with the name
ScriptC_renderscript_filename for each .rs file. This
class provides an interface to call the RenderScript functions
from java/c++ code.

During the runtime on device, this bytecode is compiled
again (just-in-time) into machine code using another com-
piler. The machine code is optimized for the device and is
cashed so the just-in-time compilation happens only during
the first time the code runs on device.

4. SYSTEM DESIGN
Running inferences using neural network model requires

executing the forward pass of the model which involves dif-
ferent operations. We ran an experiment to decide which
operations are more computationally expensive than oth-
ers and hence it is more important to optimize their per-
formance. In our experiment, we use the TensorFlow for
Android library [4] to run the forward pass of inception [22]
model on Nexus 6 phone. We observe the timing of every op-
eration and of the whole model and compute the percentage
of time spent running each operation type. The result shown
in Figure 1 demonstrates convolution operations constitute
the largest fraction of forward pass time (approx. 75%) while

Figure 1: The time share of each type of operations
during the forward pass of Inception model

matrix multiplication take the second largest fraction of the
the forward pass time (approx. 7%). Therefore, we focus
our efforts on these two kinds of operations. The following
subsections discuss our approach to modify TensorFlow to
run these operations using RenderScript instead of the de-
fault Eigen ARM NEON-based implementation.

4.1 Matrix Multiplication (MatMul)
Matrix multiplication operation (MatMul) is an essential

ingredient in all kinds of deep learning models as fully con-
nected layers require matrix multiplication between the in-
put matrix and the weight matrix. Fortunately, matrix mul-
tiplication is easy to parallelize as every element in the out-
put matrix can be computed independently from other el-
ements. Therefore, it can benefit a lot from data-parallel
execution. RenderScript framework has built-in implemen-
tation for multiple matrix BLAS (Basic Linear Algebra Sub-
programs) operations defined in ScriptIntrinsicBLAS class.
We modified TensorFlow to make use of the RenderScript

implementation of matrix multiplication instead of the de-
fault MatMul implementation that uses Eigen library.

4.2 Convolution Operation (Conv2D)
Convolution operations are the core building block of CNN

models such as the inception model [22] which has 22 con-
volution layers. Convolution layer consists of a number of
filters (their values are learned during the training phase).
The input and output of each convolution layer are repre-
sented as volumes where the depth of volume represents the
number of feature maps. For the first input layer, depth
will be 3 the RGB color channels. Convolution layer applies
the sliding filters across the height and width of input vol-
ume transforms it into another volume with the new set of
feature maps.

In order to parallelize the convolution operation using
RenderScript, we developed a render script kernel file to
execute the computation of output values in the convolu-
tion output volume in parallel.
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5. EXPERIMENTS
We implemented RSTensorFlow by extending the Tensor-

Flow v1.0.1 implementation. We used Nexus 6 and Nexus
5X mobile phones. Both phones are running Android 7.0
(Nougat, API 24). The two phones have different CPU and
GPU models. The detailed hardware specifications of the
two phones are shown in Table 1.

Model Nexus 5X Nexus 6

SoC Snapdragon 808 Snapdragon 805

Processor 1.8GHz (8 cores) 2.7 GHz (4 cores)

GPU Adreno 418 Adreno 420

Memory 2 GB 3 GB

Table 1: Hardware specs of phones used in our ex-
periments

5.1 Matrix Multiplication Operation Results
We benchmark the running time of the modified matrix

multiplication operation and compare it against the running
time of the default Eigen-based implementation on the two
different phones. We perform matrix multiplication between
square-matrices of different sizes and measure the time for
each multiplication. The timing result are shown in Figure 2.

Figure 2: Time of matrix multiplication between
square matrices using Original TensorFlow and Ren-
derScript TensorFlow

The results of our matrix multiplication experiments show
that on Nexus 5X the RenderScript implementation becomes
significantly faster as the matrix size increases. When square
matrix size = 1024, matrix multiplication using Render-
Script took 158 milli-seconds which is 6 times faster than
the default implementation using Eigen library that took
904 milli-seconds. However, on Nexus 6 phone the RenderScript-
based matrix multiplication was slower than the default Eigen-
based implementation. The reason is the following. Render-
Script does not provide the user with control (nor guaran-
tees) about which hardware resource will be used to perform
the computation. By monitoring the CPU and GPU fre-
quencies during the experiment, we observed that on Nexus

5X the GPU was used to perform the matrix multiplication
which explains the speed-up we obtained, while on Nexus 6
RenderScript did not use the GPU and used only two cores
of the available 4 CPU cores while Eigen fully utilized the
four CPU cores. This explains why RenderScript matrix-
multiplication was faster than Eigen on Nexus 5X and slower
than it on Nexus 6. We repeated our experiments multiple
times of different phones of the same type and observed sim-
ilar results.

5.2 Convolution Operation Results

Figure 3: Time of applying convolution operation on
input image with size 224x224 using Original Ten-
sorFlow and RenderScript TensorFlow

We also benchmarked the running time of both our RenderScript-
based implementation of the convolution operation and com-
pared it against the running of the default Eigen-based im-
plementation. Our benchmarking results are shown in Fig-
ure 3. Unfortunately, we have not noticed speed up in the
performance of convolution operation. Even on the Nexus
5X phone were RenderScript utilized the GPU, convolution
operation was slower than the default TensorFlow imple-
mentation based ARM NEON acceleration. This might be due
to the memory overhead associated with using RenderScript
that required copying data from/to special buffers (referred
to as allocations in RenderScript). Therefore, optimizing the
runtime of convolution operation on mobile GPU than the
Eigen-based implementation remains an interesting research
question.

5.3 ConvNet Model Results
We also studied the effects of our RenderScript extension

of TensorFlow on the total runtime of the forward pass of the
inception [22] convolutional neural network model for im-
age recognition. Inception model consists of 22 convolution
and pooling layers and two large fully connected layers at
the end of the model computation graph. It recognizes the
input image as one of 1000 class labels of the ImageNet [11]
dataset.

The results of our benchmarking experiments are shown
in Table 5.3. We observe significant speed up when utilizing
RenderScript to perform the matrix multiplication (approx-
imately 3 times faster on Nexus 5X). On the other hand,
using our implementation of the convolution operations in
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Nexus 6 Nexus 5X

Batch size Original TF TF + RS MatMul &
RS Conv2D

TF + RS
MatMul

Original TF TF + RS MatMul &
RS Conv2D

TF + RS
MatMul

1 0.453 1.765 0.312 0.699 2.775 0.351

2 0.718 1.757 0.370 1.235 2.782 0.471

3 0.979 1.879 0.475 1.785 2.811 0.649

4 1.246 1.841 0.575 2.335 2.853 0.839

5 1.535 1.830 0.645 2.988 2.930 1.025

Table 2: Comparison of the time (in seconds) required to run the forward pass of Inception model using the
original TensorFlow v1.0.1, TensorFlow with RenderScript matrix multiplication and convolution operations,
and TensorFlow with RenderScript matrix multiplication only.

RenderScript, tends to bring the whole model execution
time slower than the original TensorFlow implementation.

5.4 RNN Activity Recognition Results

Figure 4: List of hand gestures used in our LSTM-
based activity recognition model

We also benchmarked the performance of running recur-
rent neural network sequence classification model using Long-
Short Term memory (LSTM) units. We developed an activ-
ity recognition RNN model consisting of 512 LSTM units
that receive as input a time-series (100 time-steps) of ac-
celerometer and gyroscope sensor measurements to identify
the hand gesture as one of the 11 signs which are shown
in Figure 5.4. The model can achieve above 90% classifica-
tion accuracy evaluated using 5 folds cross validation on a
dataset of 1290 examples collected by four persons.

Evaluation results shown in Figure 5.4 shows that RSTen-
sorFlow slightly improves the classification runtime. Notice,
that time-series classification using RNN is a computation-
ally expensive task as the state update for every time step
involves several matrix multiplication operations.

The result shows that although the RSTensorFlow is slower
than the original TensorFlow model when the model runs
on a single example, RSTensorFlow becomes faster than the
original TensorFlow when we increase the batch size (as a
result of increasing the size of the matrix multiplication).

6. CONCLUSION
In this paper, we introduced RSTensorFlow an accelerated

deep learning framework on commodity android devices us-
ing the heterogeneous computing framework RenderScript.

Although, we noticed that GPU was not used by Render-

Script on all phone models. When GPU is used, RSTen-

sorFlow improves matrix multiplication operations a lot and
therefore we observed significant speedup in running differ-
ent models on Nexus 5X phones. Optimizing other deep
learning operations and profiling the energy costs of running
on CPU vs GPU are potential future research directions.
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