KDD 2017 Applied Data Science Paper

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Learning Tree-Structured Detection Cascades for
Heterogeneous Networks of Embedded Devices

Hamid Dadkhahi

College of Information and Computer Sciences
University of Massachusetts Amherst
hdadkhahi@cs.umass.edu

ABSTRACT

In this paper, we present a new approach to learning cascaded
classifiers for use in computing environments that involve networks
of heterogeneous and resource-constrained, low-power embedded
compute and sensing nodes. We present a generalization of the
classical linear detection cascade to the case of tree-structured
cascades where different branches of the tree execute on different
physical compute nodes in the network. Different nodes have
access to different features, as well as access to potentially different
computation and energy resources. We concentrate on the problem
of jointly learning the parameters for all of the classifiers in the
cascade given a fixed cascade architecture and a known set of costs
required to carry out the computation at each node. To accomplish
the objective of joint learning of all detectors, we propose a novel
approach to combining classifier outputs during training that better
matches the hard cascade setting in which the learned system will
be deployed. This work is motivated by research in the area of
mobile health where energy efficient real time detectors integrating
information from multiple wireless on-body sensors and a smart
phone are needed for real-time monitoring and the delivery of
just-in-time adaptive interventions. We evaluate our framework on
mobile sensor-based human activity recognition and mobile health
detector learning problems.

KEYWORDS

Cascaded classification; mobile health; low-power embedded sens-
ing networks

1 INTRODUCTION

The field of mobile health or mHealth [9] aims to leverage recent
advances in wearable on-body sensing technology and mobile com-
puting to develop systems that can monitor health states and deliver
just-in-time adaptive interventions [11]. These systems involve net-
works of heterogeneous on-body sensing devices that typically
communicate wirelessly with a smart phone. Each device in the
system typically has access to different sensor data streams and has
different computational capabilities and energy resources.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD’17, August 13-17, 2017, Halifax, NS, Canada.

© 2017 ACM. 978-1-4503-4887-4/17/08...$15.00

DOI: http://dx.doi.org/10.1145/3097983.3098169

1773

Benjamin M. Marlin
College of Information and Computer Sciences
University of Massachusetts Amherst
marlin@cs.umass.edu

mHealth research currently targets a wide range of health prob-
lems including stress [13], smoking [1, 17], overeating [19], and
even drug use [7, 12]. These applications often use one or more
wearable sensing devices including smart watches like the Sam-
sung Gear or Pebble watch, and chest band sensors like the Zephyr
BioHarness. These embedded devices have limited energy and
compute resources due to their small form factors. The wearable
sensors are linked with a smart phone (typically using Bluetooth)
that has greater, but still limited, energy and compute resources.
Time and energy costs are also incurred when transmitting data to
the smart phone for aggregation.

However, current data analytics research in mHealth focuses
almost exclusively on passive data collection followed by offline
data analysis based on common machine learning models and algo-
rithms including support vector machines [5] and random forests
[3]. This research on detection models implicitly assumes that fea-
tures from all sensors are available simultaneously, that compute
resources are unbounded, and that results do not need to be de-
livered in real time. While this research is an important first step
in establishing detector performance in the absence of real-world
constraints, the development of practical systems that can support
real-time monitoring and just-in-time-adaptive interventions while
operating for long time periods in energy constrained computing
environments requires an approach to data analytics that respects
the inherent resource constraints of mHealth systems.

In this paper, we address the foundational problem of providing
detector learning approaches for the mHealth domain that directly
address the challenges imposed by data locality, energy limitations,
and computational constraints. In particular, we propose a novel
approach to learning cascaded classifiers for use in computing
environments that involve networks of heterogeneous and resource-
constrained, low-power embedded compute and sensing nodes. We
present a generalization of the classical linear detection cascade to
the case of tree-structured cascades where different branches of the
tree execute on different physical compute nodes in the network.
We model the fact that different nodes have access to different
features, as well as access to potentially different computation and
energy resources. We concentrate on the problem of jointly learning
the parameters for all of the classifiers in the cascade given a fixed
cascade architecture and a known set of costs required to carry out
the computation at each stage in the cascade.

To accomplish the objective of joint learning of all detectors in a
tree-structured cascade, we propose a novel approach to combining
classifier outputs during training. Our approach can be seen as a
significant generalization of the soft cascade learning framework
[14] to the case of tree-structured cascades. We simultaneously
modify the classifier combination and regularization functions to

KDD 2017 Applied Data Science Paper

better match the hard cascade setting in which the learned sys-
tem will be deployed. We refer to our general cascade learning
approach, which also applies to classical linear cascades, as the
Firm Cascade Framework to emphasize its goal of better modeling
the hard decisions that occur when models are deployed.

We present experiments comparing our firm cascade framework
to the soft cascade framework as well as to single-stage models us-
ing data from the smoking detection domain. This data set includes
sensor data streams from both a wrist-worn actigraphy sensor and
a respiration chest band sensor. We further investigate the perfor-
mance of the proposed firm cascade framework on two activity
recognition datasets. We explore a variety of cascade architectures
including two and three stage linear cascades and tree-structured
cascades. Our results show that tree-structured cascades with inde-
pendent computation in different branches can be used in place of
linear cascades in this domain with little loss of accuracy or com-
putational efficiency. Our results also show that the firm cascade
learning framework outperforms the soft cascade framework either
in terms of accuracy or cost across a wide range of settings when
used to train the same cascade architecture.

2 RELATED WORK

A classical linear classifier cascade is a collection of models that are
applied in sequence to classify a data instance. In order for a data
instance to be classified as positive, it must be classified as positive
by all stages in the cascade. If any stage in the cascade rejects a
data instance, processing of that instance immediately stops and
it is classified as a negative instance. For highly class-imbalanced
data, cascades can lead to substantial computational speedups.

Perhaps the most well-known work on classifier cascade learning
is the Viola-Jones face detection framework [21]. This framework
trains a classification model for each stage sequentially using a
boosting algorithm [6]. Each stage is trained by boosting single-
feature threshold classifiers by training only on the positive exam-
ples propagated by the previous stage. The bias of the final boosted
model for each stage is then adjusted to minimize the number of
false negatives. The Viola-Jones cascade can achieve real-time face
detection by quickly rejecting the vast majority of sub-windows in
an image that do not contain a face.

Subsequent work on boosting-based learning for cascades has
focused on a number of shortcomings of the Viola-Jones cascade
including extensions of adaboost for improved design of the cascade
stages, joint training instead of greedy stage-wise training, and
methods for learning optimal configurations of a boosted cascade
including the number of boosting rounds per stage and the number
of total stages. Saberian et al. present an excellent discussion of
this work [16].

An alternative to boosting for cascade learning is the noisy-
AND approach [10]. In this framework, the probability that an
instance is classified as positive is given by the product of the output
probabilities of an ensemble of probabilistic base classifiers (often
logistic regression models). If any element of the ensemble predicts
a negative label for a data instance, the instance will receive a
negative label. The models in the ensemble are trained jointly using
the cross-entropy loss applied to the product of their probabilities.
For deployment as a cascade, the learned models must be placed in

1774

KDD’17, August 13-17, 2017, Halifax, NS, Canada

sequence in some way. A disadvantage of the noisy-AND approach
is that there is no explicit penalization related to how many stages
a data case propagates through before it is rejected as a negative
example.

Raykar et al. proposed a modification to the noisy-AND ap-
proach that retains the cross-entropy/noisy-AND objective, but
adds a penalty term to penalize the joint model based on the num-
ber of stages required to reject an example [14]. They refer to their
approach as the “soft cascade” The primary disadvantage of their
approach is that the cascade is still operated using hard decisions
once deployed. This is not well-matched to the training objective,
which retains the noisy-AND classifier combination rule. Our firm
cascade framework significantly generalizes the soft cascade frame-
work of Raykar et al. to the case of tree-structured cascades. Our
framework also simultaneously modifies the classifier combina-
tion and regularization functions to better match the hard cascade
setting in which the learned system will be deployed.

Our proposed framework is also similar to recent work on formu-
lations of cost-sensitive classification that seek to trade off feature
extraction cost against accuracy. More specifically, [20] and [22]
consider a directed acyclic graph with feature/sensor subsets as
nodes. Each node chooses whether to acquire features from a given
sensor or to classify an instance using the available measurements.
This problem is formulated as an empirical risk minimization prob-
lem for which an efficient algorithm based on dynamic program-
ming is proposed in [22]. [25] offers an extension of stage-wise
regression to the feature extraction cost minimization problem and
is applicable to either regression or multi-class classification. The
Cost-Sensitive Cascade of Classifiers (CSCC) and Cost-Sensitive
Tree of Classifiers (CSTC) frameworks [4, 23, 24] consider a similar
setting with a set of linear classifiers used at nodes in a chain or
tree with the goal of minimizing feature extraction costs while
preserving accuracy. Our framework differs from these in that the
availability of features at given stages in our setting is dictated by
external constraints imposed by the network topology of sensors
and devices. We also focus on the trade-off between the total com-
putational cost of classifying instances and classification accuracy,
not just the cost of feature extraction/acquisition.

3 THE FIRM CASCADE FRAMEWORK

In this section, we first develop the firm cascade framework for the
classical case of a binary linear cascade. We then generalize the
framework to the case of tree-structured binary cascades.

3.1 Linear Cascade Architecture

To begin, assume we wish to learn a soft linear cascade model
consisting of L stages. We define a probabilistic classifier P (y|x) for
each stage [where x € RD is the feature vector, and y € {0,1} is the
binary class label. We let the probabilistic output of the cascade be
P, (y|x). In the noisy-AND and soft cascade frameworks described
in the previous section, P, (y|x) is defined as shown below:

L
P.(ylx) = [[Py
I=1

KDD 2017 Applied Data Science Paper

O_OL 1 1 1 1
0.0 0.2 04 06 0.8
p

1 4 1
0.8 1.0 0.0 0.2

1
0.6

0.4

.
1.0

KDD’17, August 13-17, 2017, Halifax, NS, Canada

i

d I I 4 L I I I I 4
02 04 06 08 1.0 00 02 04 06 08 1.0

p

L
0.0
p

Figure 1: Examples of the gating function g, (p) at different values of the parameter «.

Our proposed firm cascade framework is based on an alternative
combination rule that better reflects the idea that when a proba-
bilistic cascade is operated in hard decision mode at deployment
time, the output of each stage of the cascade gates the computation
of the subsequent stage. In particular, for 1 <[< L — 1, a data
case x is only passed from stage [to stage [+ 1 of the cascade if
P;(y|x) > 0.5, otherwise the data case is predicted to belong to
class 0 and the computation halts at stage I. Our combination rule
for a general linear cascade is given below. We use the shorthand
p1 = P;(ylx) to simplify the notation.

L
Pyl = > 0 pp

@
=1
-1
(1= 9alp) [[9alor) 1<L
0=1 12 = 3)
Hga(Pk) I=L
k=1
Je®) = 1 o atp—09) @
ga(p) = Jap) = Ja(0) (5)

fa(1) = fa(0)
Equations 2 to 5 show that our proposed model takes the form of
a mixture of experts [8] with highly specialized mixture weights.
The effect of these mixture weights is to place nearly all of the
weight in the mixture either on the output of the first stage in the
cascade that classifies an instance as class 0, or on the output of
the classifier in the last stage of the cascade. This is accomplished
using the function g, (p) shown in Equation 5 with a moderately
large value of a.

The function g, (p) applies a normalized logistic nonlinearity to
the input probability p to approximate the hard decision function
Io.5(p) that is used at each stage of a linear cascade at deployment
time (Ip.5(p) = 1if p > 0.5 and is 0 otherwise).! We show examples
of the function g, (p) for different values of « in Figure 1. We can

!We note that the normalization of f, (p) only impacts the gating function at small
values of @ (a < 8), and is used to enforce f,, (0) = 0 and f (1) = 1.

1775

see that the function satisfies g4(0) = 0 and g4 (1) = 1 for all
a due to the normalization term. As « increases, g4 (p) provides
an increasingly accurate approximation to the hard step function
Io.5(p) while remaining smooth and differentiable. Importantly,
this approximation is amenable for use with standard continuous
optimization methods. In practice we use @ = 32 in our experiments,
but we observe broad insensitivity to the choice of this parameter
(see Figure 4 and related experiments for details).

In Equation 6, we give an example of the explicit form of a
three-stage linear cascade to further clarify the cascade design.

Pi(ylx) = (1 = ga(p1)) - p1 + ga (1) (1 = ga (p2)) - p2

+ 9a (p1)9a(p2) - p3 (6)
If the output of the first stage p; is less than 0.5, g, (p1) will be
close to zero and the output of the cascade will be P, (y|x) ~ pj.
If the output of the first stage is greater than 0.5, but the output
of the second stage is less than 0.5, then g, (p1) will be close to 1
while g, (p2) will be close to 0 and the output of the cascade will
be P, (y|x) = py. Finally, if both p; and py are greater than 0.5, then
both g4 (p1) and g4 (p2) will be close to 1 and the output of the
cascade will be P, (y|x) ~ ps. Thus, the probability output by the
cascade will be approximately equal to either the output of the first
stage [to reject a data instance with p; < 0.5, or the output of the
final stage, pr . As noted previously, this model can be viewed as a
self-gated mixture of experts since the usual independent gating
function is replaced by a gating function based on the outputs of
the experts themselves.

Unlike the majority of work on classifier cascade learning that as-
sumes the same base classifier is applied at all stages using different
features, we consider architectures where different stages can use
different base classifiers with different computational requirements
as well as different features with the idea that these classifiers will
run on different physical devices with different computational and
energy resources as well as access to different sensor data streams.
When each stage in the cascade is either a logistic regression clas-
sifier or a feedforward neural network (multi-layer perceptron)
with a logistic output, the complete firm cascade model can also be

KDD 2017 Applied Data Science Paper

viewed as a single multi-layer neural network model with a spe-
cialized output non-linearity that performs a soft selection among
the outputs of the models from the L stages.

3.2 The Tree-Structured Cascade Architecture

In this section, we generalize the linear cascade architecture de-
scribed previously to the case of directed tree-structured cascades.
The motivation for considering this extension is a deployment set-
ting involving multiple heterogeneous sensing and computation
devices all potentially operating in parallel. Each device runs its
own linear cascade. If the cascade on a given device has positive
output, then that device forwards its output and any needed fea-
tures to the next device node in the directed tree (or produces a final
output). In the mHealth setting, the network typically consists of a
collection of wearable sensors that communicate only with a smart
phone. The underlying device network thus has a star topology. In
this section, we focus on this particular device network architecture
for concreteness, but the same components that we introduce could
be used to design cascades with more complex tree structures.

To begin, we assume we have access to a total of D + 1 devices
1,..., D+1with device D+1 corresponding to the smart phone. Each
device d runs a linear cascade with L; stages. We let the probability
computed by the classifier at stage I on device d be Pld (ylx). We

denote the output of the cascade for device d by Pf(ny) = pf .
For devices 1 < d < D, P¢ (ylx) is defined as shown in Equation
2. In hard decision mode, we assert logical-AND semantics when
combining the final outputs from devices 1 < d < D. This requires
that all of the devices 1 < d < D predict that a data instance is
positive in order for further processing to occur on device D + 1.
During learning, we approximate the gating required by the logical-
AND sematics using the combination function ngl 9o (p?) with

ga (p) defined as in Equation 5. If any of the probabilities pf is
less than 0.5, the combination will be much closer to 0 than a
product of the raw probabilities pf . Below, we define the final
output probability P, (y|x) for a basic tree-structured cascade based
on this combination rule and the application of a further linear
cascade operating on device D + 1.

Lp+1
P.(ylx) = Z 0 pp ! ()
(d 1g0!(p*)) l =1
o = 1 (1=9a®]™) T, 92 (0D TIZ., 9 ()
L 2<1< [P+
k lga(PD+l)HD lga(P) [=1P*1
®)

We note that the form of the final output probability P, (y|x) is
similar to the linear cascade introduced in the previous section
except for the effect of its first stage, which accomplishes the com-
bination of the outputs from the previous D devices. As defined
in Equation 8, 6; will be close to 1 if any of the first D devices
rejects the data instance. The probabilistic output of stage 1 of the
cascade on device D + 1 is then defined to be the noisy-AND of the
probabilities of the first D devices: pP*1 = PP*1(y|x) = Hg: L pe.

The probability pf)“ = PlD+1(y|x) for stages 2 < [< Lpyj on

1776

KDD’17, August 13-17, 2017, Halifax, NS, Canada

device D + 1 is defined by the local model in that stage, as for our
earlier linear cascade model. The mixture weights 0; for the later
stages are also similar to the linear case, as seen in Equation 8, but
include a ngl ga (p?) term that models the fact that the outputs
of all of the first D devices need to be positive for further stages of
the cascade on device D + 1 to run.

3.3 Learning Cascade Models

To learn the linear firm cascade model, we maximize the log likeli-
hood of the cascade output P, (y|x) as defined in Equation 2 (equiva-
lent to minimizing the cross entropy loss), subject to a per-instance
regularizer r(yn, X,). The objective function is shown below where
the data setis D = {(yn,xn)|1 < n < N} and N is the number of
data instances.

N
LD) =) eyn%n) = Ar(4n, Xn) ©)

n=1
£(y,%) = ylog P.(yx) + (1 - y) log(1 - P(ylx) (10)
L (-1
ryx) =+ Y x|] gaPre(yl) (11)
1=2 k=1

Again, with a large value of @, g (P;(y|x)) will be approximately
0 for stages that output values that are less than 0.5, and will be
approximately 1 for stages that are greater than 0.5. Thus, this
regularizer applies a penalty approximately equal to the total cost
of executing the number of stages actually used in the cascade
to classify a given instance, where k; is the cost per stage. It is
similar to the penalty function used in [14], but is a better match
to a hard cascade due to approximating the step function with the
g () function.

To learn the tree-structured firm cascade model, we maximize
the log likelihood of the final tree-structured cascade output P, (y|x)
as defined in Equation 7. We again apply a per-instance regularizer
r(Yn,Xn), which now has a more complex form due to the fact that
we must take into account the cost of running multiple cascades on
different devices in parallel. We let k¢ be the cost of running stage
I of the classifier cascade for device d. The objective function is
shown below where the data set is again D = {(yn,xpn)|1 < n < N},
N is the number of data instances, D + 1 is the number of devices,
and Ly is the number of stages per device d.

N
L(D) =) tyn%n) = Ar(yn,Xn) (12)
n=1
La (=)
r(y.x) = Z K +le]_[gaw (1) |+ P!
d=1
Lp+1 (-1

+ Z D“]‘[mp (ylx) ﬂ (PP (ylx) (13)
d=1

Unlike most earlier work on boosted cascades, there is a direct
mapping between the features available at a given stage and the
hardware that stage runs on, so there is much more limited flexi-
bility in the assignment of features to stages. The computational
resources on a given device may also dictate the complexity of the
classification models that can be run on that device. As a result, we
focus on the problem of jointly optimizing the parameters of fixed

KDD 2017 Applied Data Science Paper

@ @@

(Cl) (C3)

&0 ©O0-0

(C2) (C4)

KDD’17, August 13-17, 2017, Halifax, NS, Canada

(C5)

(Co)

Figure 2: This figure shows the six cascade architectures used in the empirical evaluation. Each node corresponds to a classifier in the
cascade and is annotated with the type features used (W for wristband, R for respiration sensor, WR for both), the number of features used,
and the type of classifier used (LR for logistic regression, INN for a one hidden layer classifier, 2NN for a two hidden layer classifier).

cascade architectures as opposed to automatically optimizing the
cascade architecture itself (often referred to as the cascade design
problem). In our experiments, we use either logistic regression
models or neural network models at each stage in each cascade.
We implement the framework in Theano [18], which allows for
rapid specification and testing of different cascade architectures.
We use RMSProp to learn the model parameters by maximizing the
appropriate (linear or tree-structured) objective function L(D).

Finally, we note that while the complete set of models used in a
given cascade can be optimized jointly using the objective function
described above, we can also exploit the fact that the models used
in later stages of the cascade are often increasingly powerful to
develop a reverse stage-wise initialization. Specifically, for each
device d, we initialize training by learning the models in reverse
order from stage L; to stage 1, with the model for stage [being
able to depend on the downstream performance of stages [+ 1 to
L4 as well as models from device D + 1. We use this initialization
combined with fine tuning the cascade using joint training in the
experiments that follow.

4 EXPERIMENTS AND RESULTS

In this section, we present experimental results comparing our
proposed firm cascade architecture to the soft cascade of [14]. We
consider the problem of smoking puff detection from wearable
sensor data [17], and two different human activity recognition
problems based on wearable sensor data [2, 15].

4.1 Smoking Puff Detection

As a test bed, we first use the PuffMarker smoking puff detection
dataset from [17], which is highly class imbalanced. In this domain,
simple feature extraction and detection could run on the wearable
sensors, while more complex feature extraction and detection func-
tions must run on a smart phone. In the PuffMarker? data set, each

2Note that we used the dataset exactly as explained in the PuffMarker paper.

1777

data case consists of 37 features. 19 features are computed from a
respiratory inductance plethysmography sensor data stream, and
13 features are computed from accelerometer and gyroscope sen-
sors on a wrist band. The remaining 5 features are computed from
combinations of both wrist and respiration data. Overall, there are
3836 data cases in the PuffMarker dataset.

Figure 2 shows a graphical representation of the example cascade
architectures that we consider in the experiments. We compare a
single-stage model C1 to several linear and tree-structured cascades
C2 — C6. We train cascades C2 to C6 using both our firm cascade
learning approach and the soft cascade approach. For cascades C5,
and C6, when training using the soft cascade framework (which
did not consider the case of tree-structured cascades) we apply the
noisy-AND function over all nodes to obtain P, (y|x) and learn using
an alternate version of our tree-based regularizer that uses the raw
per-stage probabilities. This regularizer generalizes the original
soft cascade regularizer to the case of trees without applying the
gating function used in our firm cascade framework.

For the single-stage baseline model, we use a one-hidden-layer
neural network (1LNN) with K = 10 hidden units and all 37 fea-
tures. In all cascade models, we use logistic regression (LR) in the
first stage. For cascade models C2 and C3, in the first stage, we
consider 5 features obtained via the basis expansion @ : [x,y] —
[x, y, x, 4, xy] applied to roll (x) and pitch (y) features computed
from the accelerometer data streams. This feature set is suggested
by results in [17]. For C2, we use a one-hidden-layer neural net-
work (1LNN) with K = 10 hidden units in the second stage. For the
three-stage model C3, we use a one-layer neural network (1LNN)
with K7 = 3 hidden units as the second-stage classifier and a two-
layer neural network (2LNN) with K; = 10 and K2 = 20 hidden
units as the third-stage classifier. All models in the second and
third stages use logistic non-linearities and all 37 features. For the
cascade model C4, we use LR in first and second stages, where we
use 13 wrist and 19 respiration features, respectively. In the third
stage, we use a 1LNN with K = 10. For the tree cascade model

KDD 2017 Applied Data Science Paper

Accuracy

0.00035- ’ '
0.00030
0.00025

@ 0.00020

iZ 0.00015
0.00010
0.00005

0.00000 .
SC

KDD’17, August 13-17, 2017, Halifax, NS, Canada

SC®

Figure 3: Evaluation of different cascade models in terms of accuracy (top), F1 score (middle), and classification time (bottom). SC and Our
correspond to the soft cascade model and our proposed firm cascade model, respectively. In all cases, the superscript i indicates the cascade

model Ci.

C5, we use LR in both branches of the tree, and use the 13 wrist
features in one branch, and the 19 respiration features in the other.
In the final stage, we use a 1LNN with K = 10. For the tree cascade
model C6, we use LR with 13 wrist features in the wrist branch and
LR with 19 respiration features in the respiration branch. We use a
1NN with k; = 3 followed by a 2LNN with K; = 10 and K3 = 20
on the final device. Preliminary testing was used to identify the
hidden layer sizes. Using larger hidden layer sizes tends to either
result in lower accuracy due to over-fitting or similar accuracy, but
increased time. We assume a cost-per stage that is proportional to
the compute time for each stage.

We conducted these experiments using 8-fold stratified cross val-
idation to assess generalization and computation time performance.
To compare models, the cost scaling parameter A in our proposed
firm cascade model and the soft cascade model was swept over a
grid to produce a per-model speed-accuracy trade-off curve with
the accuracy computed as the mean over the cross validation folds.
For each model, we select the maximum accuracy point and assess
the compute time required to achieve that result. The compute
time that we use is the average time in seconds that each learned
cascade needs to classify a test instance when operated in hard
decision mode. Timing results are averaged over 10, 000 classifier
evaluations 3. We also compute the F1 score of the methods at

3Multiple runs (i.e. 10,000 classification evaluations) are performed during testing to
account for the variations of the computation time

1778

the maximum accuracy point. All experiments were performed on
2.4GHz Intel Xeon E5-2440 CPU’s.

The results are shown in Figure 3 including one-standard-error
error bars. First, we can see that all of the cascaded models out-
perform the single-stage classifier in terms of mean classification
time. When our approach is used to train the architecture C5, for
example, we obtain a speedup of about 300% with a negligible im-
pact on average F1 and a slight improvement in average accuracy
relative to the single-stage model. We note that similar accuracy
can be obtained using a single-stage two hidden layer neural net-
work (not shown), but our model takes one quarter the time of this
single-stage two hidden layer model. The soft cascade approach
applied to C5 results in a learned model that requires about 40%
more time to achieve slightly lower average accuracy and similar
average F1 compared to our approach. Using a paired t-test over
all folds and architectures confirms that our approach results in
models that are statistically significantly faster than the soft cascade
approach (p<0.01). A similar test applied to the accuracy results
shows that our approach achieves statistically significant accuracy
improvements (p<0.01). The F1 results are considerably more noisy
and fail to achieve statistical significance despite being better on
average.

In order to get a better sense of where the cost advantage of
our proposed cascade model comes from compared to that of the
soft cascade model framework, we take a closer look at the cascade

KDD 2017 Applied Data Science Paper

model C5. We evaluate the number of cases passed through each
stage (for the first cross validation fold), which in turn dictates
the computation time of the cascade. The first branch of the soft
cascade model passes 225 cases (out of 480 cases) through, whereas
the second branch passes 282 cases through. The intersection of
the two branches is a set of 136 cases, which all must run through
the final stage of the classifier. On the other hand, in our proposed
cascade framework, 137 and 269 points are passed through from the
first and second branches, respectively. The intersection of the two
branches is a set of only 86 cases, all of which must run through
the final stage of the classifier. Thus, the major factor in the lower
cost of our cascade framework is the lower number of cases that
propagate through all stages of the cascade.

We also conducted experiments on the C5 model on the Puff-
Marker dataset (with a random train/test split of 3400/436 points)
in order to evaluate the sensitivity of the results to the a parameter.
The results in these experiments were obtained when optimizing A
for values of a from the set {2/ : =2 < i < 10,i € Z} U {co}, where
setting the value of @ = oo corresponds to the hard threshold gating
function. As can be observed from the results shown in Figure 4,
moderate values of the parameter a € {8, 16,32} produce optimal
results in terms of both accuracy and computation time. At smaller
values of @ (@ < 8), we observe an increase in computation time.
Note that at @ = 0 the gating function is not defined. On the other
hand, g, (p) tends to p for sufficiently small (but non-zero) values
of & (this can easily be shown via L’'Hopital’s rule). Hence, the
performance is almost the same for sufficiently small (but non-zero)
values of & (results for a < % are virtually constant). On the other
hand, as we increase the value of the parameter « (e.g. @ > 64), the
accuracy of the model reduces gradually. Specifically, the accuracy
of the hard thresholding function (¢ = oo) is substantially lower;
one hypothesis for this behavior is that the gradient of the regu-
larizer goes to zero everywhere (except at exactly p = 0.5 where
it is undefined) as @ goes to co; hence, the regularizer does not
contribute information to help improve the model.

As such, moderate values for the parameter o (e.g. between 8 and
32) produce optimal (and very similar) results for the C5 model on
PuffMarker data set. We did not attempt to optimize the value of a
for different cascade models as we expect this broad insensitivity to
hold across models. Thus, the same value (¢ = 32) has been used in
all the experiments on different datasets and over different cascade
models. This fixed value of & has been sufficient to outperform the
soft cascade in all of the models over different datasets. Further
optimization of @ would only improve results further.

Finally, we note that the computation time per RMSProp iter-
ation for the firm cascade objective is three to four times longer
than for the soft cascade objective when training the same cascade
architecture. However, the firm cascade objective tends to converge
three to four times faster than the soft cascade objective so that the
total learning time is approximately the same for both approaches.

4.2 Human Activity Recognition

Next, we evaluate the performance of both the proposed firm cas-
cade model and the soft cascade model on two activity recognition
(AR) datasets. The first AR dataset is the “Human Activity Recogni-
tion (HAR) using smartphones dataset"” [2], where 561 features are

1779

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Accuracy

0,965 Lrmrmmbe ook
11 2 48 32 64 256 512

o

Time

i i i i i
128 256 512 1024 oo

i i
1 1
i 3 1 2 4 8

Figure 4: Evaluation of the sensitivity of the firm cascade frame-
work for model C5 versus the parameter a: accuracy versus « (top),
time versus « (bottom).

measured from the data captured by two sensors: an accelerometer
and a gyroscope, and the sensors are connected to a smartphone.
The experiments have been carried out with a group of 30 vol-
unteers, where each volunteer performed six different activities:
walking, walking upstairs, walking downstairs, sitting, standing,
and laying. The obtained dataset has a total of 10299 data cases. All
results use 4-fold cross validation.

In our experiments on cascade models, we consider walking
as the positive class and the rest of the activities as the negative
class, in order to produce a binary classification problem with
unbalanced classes. Here we focus on the cascade models C2 and
C5, and compare the results against the single-stage 1LNN (with
K = 10), corresponding to C1. In C2, we use a LR in the first stage,
and a 1LNN with K = 10 in the second stage. In addition, we
restrict access to only the gyroscope features in the first stage, but
all the features are available in the second stage. In C5, similar to
PuffMarker experiments, we have two branches, where each branch
deploys the features generated by one of the sensors (accelerometer
versus gyroscope). Finally, we have LR in the branches, whereas
we use 1LNN with K = 10 in the second stage.

The performance of the firm and soft cascade frameworks for C1,
C2, and C5 are shown in Figure 5. In this figure, timing results are
averaged over 1,000 classifier evaluations. From the results for the
C5 model, we can observe that the values of the accuracy for both
firm and soft cascade framework are similar and virtually the same
as the single-stage model. However, our firm cascade framework
reduces the computation time more than the soft cascade framework
for both C2 and C5. The reduction in computation time is again
statistically significant (p<0.01).

The second AR dataset is the “PAMAP2 physical activity moni-
toring dataset" [15]. PAMAP2 is recorded from 9 subjects. Subjects
wore three inertial measurement units (attached to hand, ankle,

KDD 2017 Applied Data Science Paper

1.00 - ‘ ‘ _
| |
0.99- - — - . e —— D
9
g 098~ =d == == -- .
3
0 0.97- - - - - - - - - B
<
0.96- - — — =d == == -
0.95- . . J
1LNN SC? Our? SC? our®
1.00 - ‘ ‘ | | o
| | | |
0.98- - — - cocgocooog locos e ——
0.96- - - — - -- - -- .
—
w
0.94- — — - =4 _— - N
0.92- - — - =4 _— - N
0.90- - |
1LN SC? Our SC Our®
0.020~ ————— T e P —— ———
| | | | |
I I I I
0.015- - - — cecdecaa=d e e b= Leceecdg
: | | | |
I I I I
1) | | | |
€ 0.010- - - - R - ——— -~ - b-— ==
i I I | I
| |
T
0.000-——— _ — — — —
1LNN SC? Our? SC? Oour®

Figure 5: Evaluation of cascade models C1, C2, and C5 for HAR
dataset in terms of accuracy (top), F1 score (middle), and classifica-
tion time (bottom). SC and Our correspond to the soft cascade model
and our proposed firm cascade model, respectively. In all cases, the
superscript i indicates the cascade model Ci.

and chest) and a heart rate monitor while performing 18 different
activities. We consider the intensity estimation task defined in
[15], where the activities are grouped according to their intensities.
More specifically, we consider the vigorous activities (ascending
stairs, running, and rope jumping) as the positive class, and the
remaining activities (light and moderate activities) as the negative
class. From the dataset and the description of the features in [15],
we reproduced 119 features obtained from the three measurement
units and the heart rate monitor. For our experiments on cascade
models, we picked a random subset of 12,000 data cases and used
6-fold cross validation. Since in PAMAP2 we have four sensors, we
use the C5 model with 4 branches, where each branch employs the
features generated from one of the sensors. We use LR classifiers
in the first-stage classifiers (i.e. classifiers in the four branches of
the cascade), and a 1ILNN with K = 30 in the second stage.

The performance of the firm and soft cascade frameworks for C1
and C5 are shown in Figure 6. Again, timing results are averaged
over 1,000 classifier evaluations. From this figure, we see that the
best accuracy obtained from both firm and soft cascade frameworks
are the same, but in terms of computational time, our proposed
cascade framework performs substantially better. The reduction in
computation time is again statistically significant (p<0.01).

1780

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Accuracy

& 0.0008 - - - I
F 0.0006 - - -
0.0004 - — -
0.0002- -
0.0000

Our®

ILNN SC°
Figure 6: Evaluation of cascade models C1 and C5 for PAMAP2
dataset in terms of accuracy (top), F1 score (middle), and classifica-
tion time (bottom). SC and Our correspond to the soft cascade model
and our proposed firm cascade model, respectively.

5 CONCLUSIONS AND FUTURE WORK

We have introduced a new approach to cascaded classifier learning
using a cascade learning objective that better matches the hard de-
cisions that are made when the learned cascade is deployed in prac-
tice. Our results indicate that our approach can lead to significant
improvements in terms of accuracy/F1-score and computational
time over the soft cascade (and noisy-AND approach) on different
data sets and cascade architectures. This will enabling real-time
data analytics on resource-constrained networks of devices with
improved accuracy and/or lower cost.

In terms of future work, we plan to develop improved cost mod-
els for the devices that we intend to deploy cascades on. The current
experiments use computation time as proxy, but real applications
need to consider a more general energy-based cost model that takes
into consideration the cost of sensing, computing, and communicat-
ing across devices. Second, we intend to deploy the learned smoking
detection models on actual hardware to assess the performance of
the end-to-end system. We also plan to expand the application of
the proposed architecture to other application domains and other
model types. Of particular interest are more computationally inten-
sive structured prediction-based models (for example, conditional
random field models). An interesting direction is to consider adding
a cloud-based stage to the architecture with much greater compute

KDD 2017 Applied Data Science Paper

power and no resource constraints to run such models. While com-
municating with cloud-based computational resources over WiFi
or cellular networks can be prohibitively expensive if all data must
be streamed to the cloud, transmitting a small volume of cases
at the end of our current cascades would be much more realistic.
Finally, we note that the problem of automatically configuring a
tree-structured cascade given a graph of the underlying network
architecture is an interesting challenge that could further improve
the speed-accuracy trade-off we have already demonstrated.

6 ACKNOWLEDGMENTS

The authors would like to thank Deepak Ganesan, Nazir Saleheen,
and Santosh Kumar for helpful discussions of this research. This
work was partially supported by the National Institutes of Health
under award 1U54EB020404 and the National Science Foundation
under award I1S-1350522.

REFERENCES

[1] Amin Ahsan Ali, Syed Monowar Hossain, Karen Hovsepian, Md. Mahbubur
Rahman, Kurt Plarre, and Santosh Kumar. 2012. mPuff: Automated Detection
of Cigarette Smoking Puffs from Respiration Measurements. In International
Conference on Information Processing in Sensor Networks. 269-280.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-
Ortiz. 2013. A Public Domain Dataset for Human Activity Recognition Us-
ing Smartphones. In 21th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Bel-
gium. https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+
Using+Smartphones

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.

M. Chen, K. Weinberger Z. Xu, O. Chapelle, and D. Kedem. 2012. Classifier
Cascade for Minimizing Feature Evaluation Cost. In International Conference on
Artificial Intelligence and Statistics (AISTATS). La Palma, Canary Islands.
Corinna Cortes and Vladimir Vapnik. 1995. Support vector networks. Machine
learning 20, 3 (1995), 273-297.

Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55, 1
(1997), 119-139.

Syed Monowar Hossain, Amin Ahsan Ali, Mahbubur Rahman, Emre Ertin, David
Epstein, Ashley Kennedy, Kenzie Preston, Annie Umbricht, Yixin Chen, and
Santosh Kumar. 2014. Identifying drug (cocaine) intake events from acute physio-
logical response in the presence of free-living physical activity. In Int. Symposium
on Information processing in sensor networks. 71-82.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural computation 3, 1 (1991), 79-87.
Santosh Kumar, Wendy Nilsen, Misha Pavel, and Mani Srivastava. 2013. Mobile
health: Revolutionizing healthcare through transdisciplinary research. Computer
1(2013), 28-35.

Leonidas Lefakis and Francois Fleuret. 2010. Joint cascade optimization using
a product of boosted classifiers. In Advances in Neural Information Processing

(2]

1781

[11

[12

(13]

[16]

(17

(18]

[19

[20

[21]

[22

[24

[25

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Systems. 1315-1323.

Inbal Nahum-Shani, Shawna N Smith, Ambuj Tewari, Katie Witkiewitz, Linda M
Collins, Bonnie Spring, and S Murphy. 2014. Just in time adaptive interven-
tions (JITAIs): An organizing framework for ongoing health behavior support.
Methodology Center technical report 14-126 (2014).

Annamalai Natarajan, Abhinav Parate, Edward Gaiser, Gustavo Angarita, Robert
Malison, Benjamin Marlin, and Deepak Ganesan. 2013. Detecting cocaine use
with wearable electrocardiogram sensors. In Proceedings of the ACM international
Jjoint conference on Pervasive and ubiquitous computing. 123-132.

Kurt Plarre, Andrew Raij, Syed Monowar Hossain, Amin Ahsan Ali, Motohiro
Nakajima, Mustafa al’Absi, Emre Ertin, Thomas Kamarck, Santosh Kumar, Marcia
Scott, and others. 2011. Continuous inference of psychological stress from
sensory measurements collected in the natural environment. In International
Conference on Information Processing in Sensor Networks (IPSN). IEEE, 97-108.
Vikas C Raykar, Balaji Krishnapuram, and Shipeng Yu. 2010. Designing effi-
cient cascaded classifiers: tradeoff between accuracy and cost. In ACM SIGKDD
international conference on Knowledgediscovery and data mining. ACM, 853-860.
A. Reiss and D. Stricker. 2012. Creating and Benchmarking a New Dataset
for Physical Activity Monitoring. In The 5th Workshop on Affect and Behaviour
Related Assistance (ABRA). https://archive.ics.uci.edu/ml/datasets/PAMAP2+
Physical+Activity+Monitoring

Mohammad Saberian and Nuno Vasconcelos. 2014. Boosting algorithms for
detector cascade learning. Journal of Machine Learning Research 15, 1 (2014),
2569-2605.

Nazir Saleheen, Amin Ahsan Ali, Syed Monowar Hossain, Hillol Sarker, Soujanya
Chatterjee, Benjamin Marlin, Emre Ertin, Mustafa al’Absi, and Santosh Kumar.
2015. puffMarker: a multi-sensor approach for pinpointing the timing of first
lapse in smoking cessation. In ACM International Joint Conference on Pervasive
and Ubiquitous Computing. 999-1010.

Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
http://arxiv.org/abs/1605.02688

Edison Thomaz, Irfan Essa, and Gregory D Abowd. 2015. A practical approach
for recognizing eating moments with wrist-mounted inertial sensing. In ACM
International Joint Conference on Pervasive and Ubiquitous Computing. 1029-1040.
Kirill Trapeznikov and Venkatesh Saligrama. 2013. Supervised Sequential Clas-
sification Under Budget Constraints. In International Conference on Artificial
Intelligence and Statistics (AISTATS). 581-589.

Paul Viola and Michael Jones. 2001. Rapid Object Detection using a Boosted
Cascade of Simple Features. IEEE Conference on Computer Vision and Pattern
Recognition 1 (2001), 511.

Joseph Wang, Kirill Trapeznikov, and Venkatesh Saligrama. 2015. Efficient
Learning by Directed Acyclic Graph For Resource Constrained Prediction. In
Advances in Neural Information Processing Systems 28. 2152-2160.

Zhixiang Xu, Matt Kusner, Minmin Chen, and Kilian Q. Weinberger. 2013. Cost-
Sensitive Tree of Classifiers. In International Conference on Machine Learning.
133-141.

Zhixiang Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen, and Olivier
Chapelle. 2014. Classifier Cascades and Trees for Minimizing Feature Evaluation
Cost. J. Mach. Learn. Res. 15, 1 (2014), 2113-2144.

Zhixiang Xu, Kilian Q. Weinberger, and Olivier Chapelle. 2012. The Greedy
Miser: Learning under Test-time Budgets. In International Conference on Machine
Learning (ICML). 169.

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
http://arxiv.org/abs/1605.02688

	Abstract
	1 Introduction
	2 Related Work
	3 The Firm Cascade Framework
	3.1 Linear Cascade Architecture
	3.2 The Tree-Structured Cascade Architecture
	3.3 Learning Cascade Models

	4 Experiments and Results
	4.1 Smoking Puff Detection
	4.2 Human Activity Recognition

	5 Conclusions and Future Work
	6 Acknowledgments
	References

