
The VLDB Journal
DOI 10.1007/s00778-017-0474-5

SPECIAL ISSUE PAPER

Adding data provenance support to Apache Spark

Matteo Interlandi1 · Ari Ekmekji3 · Kshitij Shah2 · Muhammad Ali Gulzar2 ·
Sai Deep Tetali2 · Miryung Kim2 · Todd Millstein2 · Tyson Condie2

Received: 15 January 2017 / Revised: 13 May 2017 / Accepted: 24 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract Debugging data processing logic in data-intensive
scalable computing (DISC) systems is a difficult and time-
consuming effort. Today’s DISC systems offer very little
tooling for debugging programs, and as a result, program-
mers spend countless hours collecting evidence (e.g., from
log files) and performing trial-and-error debugging. To aid
this effort, we built Titian, a library that enables data prove-
nance—tracking data through transformations—in Apache
Spark. Data scientists using the Titian Spark extension will
be able to quickly identify the input data at the root cause
of a potential bug or outlier result. Titian is built directly
into the Spark platform and offers data provenance sup-
port at interactive speeds—orders of magnitude faster than
alternative solutions—while minimally impacting Spark job
performance; observed overheads for capturing data lineage
rarely exceed 30% above the baseline job execution time.

Keywords Data provenance · Spark · Debugging

1 Introduction

Data-intensive scalable computing (DISC) systems, like
Apache Hadoop [23] and Apache Spark [39], are being used
to analyze massive quantities of data. These DISC systems
expose a programming model for authoring data process-

Matteo Interlandi was formally affiliated to University of California,
Los Angeles, Los Angeles, CA, USA when the work was done.

B Matteo Interlandi
mainterl@microsoft.com

1 Microsoft, Redmond, WA, USA

2 University of California, Los Angeles, Los Angeles, CA, USA

3 Stanford University, Stanford, CA, USA

ing logic, which is compiled into a directed acyclic graph
(DAG) of data-parallel operators. The root DAG operators
consume data from an input source (e.g., Amazon S3 or
HDFS), while downstream operators consume the intermedi-
ate outputs fromDAG predecessors. Scaling to large datasets
is handled by partitioning the data and assigning tasks that
execute the “transformation” operator logic on each partition.

Debugging data processing logic in DISC environments
can be daunting. A recurring debugging pattern is to identify
the subset of data leading to outlier results, crashes, or excep-
tions. Another common pattern is trial-and-error debugging,
where developers selectively replay a portion of their data
processing steps on a subset of intermediate data leading
to outlier or erroneous results. These features motivate the
need for capturing data provenance (also referred to as data
lineage) and supporting appropriate provenance query capa-
bilities in DISC systems. Such support would enable the
identification of the input data leading to a failure, crash,
exception, or outlier results. Our goal is to provide interactive
data provenance support that integrates with the DISC pro-
grammingmodel and enables the above debugging scenarios.

Current approaches supporting data lineage in DISC sys-
tems (specifically RAMP [25] and Newt [31]) do not meet
our goals due to the following limitations: (1) they use
external storage such as a shared DBMS or distributed file
systems (e.g., HDFS) to retain lineage information; (2) data
provenance queries are supported in a separate programming
interface; and (3) they provide very little support for view-
ing intermediate data or replaying (possibly alternative) data
processing steps on intermediate data. These limitations pre-
vent support for interactive debugging sessions. Moreover,
we show that these approaches do not operate well at scale,
because they store the data lineage externally.

In this paper, we introduce Titian, a library that enables
interactive data provenance in Apache Spark. Titian inte-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0474-5&domain=pdf
http://orcid.org/0000-0002-5756-8321

M. Interlandi et al.

grates with the Spark programming interface, which is based
on a resilient distributed dataset (RDD) [44] abstraction
defining a set of transformations and actions that process
datasets. Additionally, data from a sequence of transfor-
mations, leading to an RDD, can be cached in memory.
Spark maintains program transformation lineage so that it
can reconstruct lost RDD partitions in the case of a failure.

Titian enhances the RDD abstraction with fine-grained
data provenance capabilities. From any given RDD, a Spark
programmer can obtain a LineageRDD reference, which
enablesdata tracing functionality, i.e., the ability to transition
backward (or forward) in the Spark programdataflow. Froma
givenLineageRDD reference, corresponding to a position in
the program’s execution, any native RDD transformation can
be called, returning a newRDD that will execute the transfor-
mation on the subset of data referenced by theLineageRDD.
As we will show, this facilitates the ability to trace back-
ward (or forward) in the dataflow, and from there execute
a new series of native RDD transformations on the refer-
ence data. The tracing support provided by LineageRDD
integrates with Spark’s internal batch operators and fault tol-
erancemechanisms. As a result, Titian can be used in a Spark
terminal session, providing interactive data provenance sup-
port along with native Spark ad hoc queries.
Debugger applications Titian functionalities can be used
stand-alone or in conjunction with other high-level tools.
For example, we have recently leveraged Titian for support-
ing debugging features in BigDebug [21,22]: an Apache
Spark debugging toolkit. Below, we highlight two features
that build on Titian:

– Crash culprit determination In Spark, crashes caused by
code errors result in program termination, even when the
problem remedy is trivial. BigDebug leverages Titian to
identify the input record data that causes a crash. The cul-
prit records are packed togetherwith other run-time infor-
mation and sent to the driver so that the programmer can
examine them and possibly take remediation action, such
as revise the code, or ignore the crash and resume the job.

– Automated fault localization Errors in code or data are
hard to diagnose in platforms like Apache Spark. We
explore the feasibility of standard debugging techniques
such as delta debugging [45] for automated fault localiza-
tion in Spark programs. The delta debugging technique
takes the original failure-inducing record set and divides
it into several record subsets using a binary search-like
strategy. The program is re-executed on the faulty record
subsets, whichmay again induce a failure. The procedure
is recursively applied until a minimum failure-inducing
subset is identified. Applying the delta debugging tech-
nique to Spark workloads is extremely expensive. How-
ever, preliminary results show that Titian is able to

improve the performance of program re-execution by nar-
rowing the search strategy using lineage [19,20].

Contributions To summarize, Titian offers the following
contributions:

– A data lineage capture and query support system in
Apache Spark.

– A lineage capturing design that minimizes the overhead
on the target Spark program—most experiments exhibit
an overhead of less than 30%.

– We show that our approach scales to large datasets with
less overhead compared to prior work [25,31].

– Interactive data provenance query support that extends
the familiar Spark RDD programming model.

– An evaluation of Titian that includes a variety of design
alternatives for capturing and tracing data lineage.

– A set of optimizations that reduce lineage query time by
more than an order of magnitude.

In this paper, we present an improved version of the origi-
nal Titian system [28] that can reduce the lineage query time
by an order of magnitude through two optimization tech-
niques: (1) a custom Spark scheduler that can prune tasks
that do not contribute to trace query results (Sect. 6.2) and
(2) an index file for storing, and efficiently retrieving, data
lineage in the Spark BlockManager (Sect. 6.3). Finally, we
have included additional experiments showcasing the perfor-
mance of Titian in forward tracing scenarios (Sect. 6.4.2).
Outline The remainder of the paper is organized as follows.
Section2 contains a brief overviewofSpark anddiscusses our
experience with using alternative data provenance libraries
with Spark. Section 3 defines the Titian programming inter-
face. Section 4 describes Titian provenance capturing model
and its implementation. The experimental evaluation of
Titian is presented in Sect. 5. Optimizations and related per-
formance improvements are introduced in Sect. 6. Related
work is covered in Sect. 7. Section 8 concludes with future
directions in the DISC debugging space.

2 Background

This section provides a brief background on Apache Spark,
which we have instrumented with data provenance capabil-
ities (Sect. 3). We also review RAMP [25] and Newt [31],
which are toolkits for capturing data lineage and supporting
off-line data provenance queries for Hadoop and Aster-
ixDB [8] workloads. Our initial work in this area leveraged
these two toolkits for data provenance support in Spark.
During this exercise, we encountered a number of issues,
including scalability (the sheer amount of lineage data that
could be captured and used for tracing), job overhead (the

123

Adding data provenance support to Apache Spark

per-job slowdown incurred from data lineage capture), and
usability (both provide limited support for data provenance
queries). RAMP and Newt operate externally to the target
DISC system, making them more general than Titian. How-
ever, this prevents a unified programming environment, in
which both data analysis and provenance queries can be
co-developed, optimized, and executed in the same (Spark)
run-time. Moreover, Spark programmers are accustomed to
an interactive development environment (e.g., notebook or
spark shell), which we want to support.

2.1 Apache Spark

Spark is a DISC system that exposes a programming model
based on resilient distributed datasets (RDDs) [44]. TheRDD
abstraction provides transformations (e.g., map, reduce, fil-
ter, group-by, join) and actions (e.g., count, collect) that
operate on datasets partitioned over a cluster of nodes. A
typical Spark program executes a series of transformations
ending with an action that returns a result value (e.g., the
record count of an RDD, a collected list of records refer-
enced by the RDD) to the Spark “driver” program, which
could then trigger another series of RDD transformations.
The RDD programming interface can support these data
analysis transformations and actions through an interactive
terminal, which comes packaged with Spark.

Spark driver programs run at a central location and oper-
ate on RDDs through references. A driver program could be
a user operating through the Spark terminal, or it could be a
stand-alone Scala program. In either case, RDD references
lazily evaluate transformations by returning a new RDD ref-
erence that is specific to the transformation operation on the
target input RDD(s). Actions trigger the evaluation of an
RDD reference, and all RDD transformations leading up to
it. Internally, Spark translates a series of RDD transforma-
tions into a DAG of stages, where each stage contains some
sub-series of transformations until a shuffle step is required
(i.e., data must be re-partitioned). The Spark scheduler is
responsible for executing each stage in topological order
according to data dependencies. Stage execution is carried
out by tasks that perform the work (i.e., transformations)
of a stage on each input partition. Each stage is fully exe-
cuted before downstream-dependent stages are scheduled,
i.e., Spark batch executes the stage DAG. The final output
stage evaluates the action that triggered the execution. The
action result values are collected from each task and returned
to the driver program, which can initiate another series of
transformations ending with an action. Next, we illustrate
the Spark programming model with a running example used
throughout the paper.
Running exampleAssume we have a large log file stored in a
distributed file system such as HDFS. The Spark program in
Fig. 1 selects all lines containing errors, counts the number

1 lines = sc.textFile("hdfs://...")
2 errors = lines.filter(_.startsWith("ERROR"))
3 codes = errors.map(_.split("\t")(1))
4 pairs = codes.map(word => (word, 1))
5 counts = pairs.reduceByKey(_ + _)
6 reports = counts.map(kv => (dscr(kv._1),

kv._2))
7 reports.collect.foreach(println)

Fig. 1 Running example: log analysis (“val” declarations omitted for
brevity)

of error occurrences grouped by the error code, and returns a
report containing the description of each error, together with
its count.
The first line loads the content of the log file from HDFS and
assigns the result RDD to the lines reference. It then applies a
filter transformation on lines and assigns the result RDD
to the errors reference, which retains lines with errors.1 The
transformations in lines 3 and 4 are used to (1) extract an
error code, and (2) pair each error code with the value one,
i.e., the initial error code count. The reduceByKey trans-
formation sums up the counts for each error code, which is
then mapped into a textual error description referenced by
reports in line 6.2 The collect action triggers the evalu-
ation of the reports RDD reference, and all transformations
leading up to it. The collect action result is returned to
the driver program, which prints each result record.

Figure 2 schematically represents a toy Spark cluster exe-
cuting this example on a log file stored in three HDFS
partitions. The top of the figure illustrates the stage DAG
internally constructed by Spark. The first stage contains the
lines, errors, codes, and pairs reference transformations.
The second stage contains (1) the counts reference pro-
duced by the reduceByKey transformation, which groups
the records by error code in a shuffle step, and (2) the final
map transformation that generates the reports reference.

The collect action triggers the execution of these two
stages in the Spark driver, which is responsible for instan-
tiating the tasks that execute the stage DAG. In the specific
case of Fig. 2, three tasks are used to execute stage 1 on
the input HDFS partitions. The output of stage 1 is shuffled
into two partitions of records grouped by error code, which
is also naturally the partitioning key. Spark then schedules
a task on each of the two shuffled partitions to execute the
reduceByKey transformation (i.e., sum) in stage 2, ending
with the finalmap transformation, followed by thecollect
action result, which is sent back to the driver.

1 Note that the underscore (_) character is used to indicate a closure
argument in Scala, which in this case is the individual lines of the log
file.
2 dscr is a hash table mapping error codes to the related textual
description.

123

M. Interlandi et al.

Fig. 2 Example Spark cluster running a job instance executing tasks
that run the stage logic on input partitions loaded from HDFS. Data
are shuffled between stages 1 and 2. Final results are collected into the
driver

2.2 Data provenance in DISC

RAMP [25] and Newt [31] address the problem of support-
ing data provenance in DISC systems through an external,
generic library. For example, RAMP instruments Hadoop
with “agents” that wrap the user provided map and reduce
functions with lineage capture capabilities. RAMP agents
store data lineage in HDFS, where toolkits like Hive [40] and
Pig [36] can be leveraged for data provenance queries. Newt
is a system for capturing data lineage specifically designed
to “discover and resolve computational errors.” Like RAMP,
Newt also injects agents into the dataflow to capture and
store data lineage; however, instead ofHDFS,Newt stores the
captured data lineage in a cluster of MySQL instances run-
ning alongside the target system. Data provenance queries
are supported in Newt by directly querying (via SQL) the
data lineage stored in the MySQL cluster.

Tracing through the evolution of record data in a DISC
dataflow is a common data provenance query. Newt also ref-
erences support for replaying the program execution on a
subset of input data that generated a given result, e.g., an
outlier or erroneous value. Naturally, this first requires the
ability to trace to the input data leading to a final result. We
use the term trace to refer to the process of identifying the
input data that produced a given output data record set. In the
context of Spark, this means associating each output record
of a transformation (or stage, in Titian’s case) with the cor-
responding input record. Tracing can then be supported by
recursing through these input to output record associations
to a desired point in the dataflow.

 100

 1000

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Spark
Newt

RAMP

dataset size RAMP Newt
1GB 1.28× 1.69×
10GB 1.6× 10.75×
100GB 4× 86×
500GB 2.6× inf

Fig. 3 Run-time of Newt and RAMP data lineage capture in a Spark
word-count job. The table summarizes the plot results at four dataset
sizes and indicates the run-time as a multiplier of the native Spark job
execution time

2.3 Newt and RAMP instrumentation

Our first attempt at supporting data provenance in Spark
leveraged Newt to capture data lineage at stage boundaries.
However, we ran into some issues. To leverage Newt, we
first had to establish and manage a MySQL cluster alongside
our Spark cluster. Second, we ran into scalability issues: as
the size of data lineage (record associations) grew large, the
Spark job response time increased by orders of magnitude.
Third, tracing support was limited: for instance, performing
a trace in Newt required us to submit SQL queries in an
iterative loop. This was done outside of Spark’s interactive
terminal session in a Python script. Lastly, both Newt and
RAMP do not store the referenced raw data,3 preventing us
from viewing any intermediate data leading to a particular
output result. It was also unclear to us, based on this issue,
how “replay” on intermediate data was supported in Newt.

Based on the reference Newt documentation, our instru-
mentation wraps Spark stages with Newt agents that capture
data lineage. Newt agents create unique identifiers for indi-
vidual data records and maintain references that associate
output record identifiers with the relevant input record iden-
tifiers. The identifiers and associations form the data lineage,
which Newt agents store in MySQL tables.

Figure 3 gives a quantitative assessment of the additional
time needed to execute a word-count job when capturing lin-
eage with Newt. The results also include a version of the
RAMP design that we built in the Titian framework. For this
experiment, only RAMP is able to complete the workload in
all cases, incurring a fairly reasonable amount of overhead,

3 Because doing so would be prohibitively expensive.

123

Adding data provenance support to Apache Spark

1 abstract class LineageRDD[T] extends RDD[T] {
2 // Full trace backward
3 def goBackAll(): LineageRDD
4 // Full trace forward
5 def goNextAll: LineageRDD
6 // One step backward
7 def goBack(): LineageRDD
8 // One step forward
9 def goNext(): LineageRDD

10

11 @Override
12 /* Introspects Spark dataflow
13 * for lineage capture */
14 def compute(split: Partition,
15 context: TaskContext): Iterator[T]
16 }

Fig. 4 LineageRDD methods for traversing through the data lineage
in both backward and forward directions. The native Spark compute
method is used to plug a LineageRDD instance into the Spark dataflow
(described in Sect. 4)

i.e., RAMP takes on average 2.3× longer than theSpark base-
line execution time. However, the overhead observed inNewt
is considerably worse (up to 86× the Spark baseline), pre-
venting the ability to operate on 500GB. Simply put,MySQL
could not sustain the data lineage throughput observed in this
job. Section 5 offers further analysis.

3 Data provenance in Spark

Titian is a library that supports data provenance in Spark
through a simple LineageRDD application programming
interface, which extends the familiar RDD abstraction with
tracing capabilities. This section describes the extensions
provided by LineageRDD along with some example prove-
nance queries that use those extensions in concert with native
RDD transformations (e.g., filter). Since our design inte-
grates with the Spark programming model and run-time,
Titian extensions can be used naturally in interactive Spark
sessions for exploratory data analysis.

Titian extends the native Spark RDD interface with a
method (getLineage) that returns a LineageRDD, rep-
resenting the starting point of a trace; the data referenced by
the native Spark RDD represent the trace origin. From there,
LineageRDD supports methods that transition through the
transformation dataflow at stage boundaries.

Figure 4 lists the transformations that LineageRDD sup-
ports. The goBackAll and goNextAll methods can be
used to compute the full trace backward and forward, respec-
tively. That is, given some result record(s), goBackAll
returns all initial input records that contributed to the result
record(s); conversely,goNextAll returns all the final result
records that the starting input record(s) contributed to. A

1 frequentPair = reports.sortBy(_._2, false).take(1)
2 frequent = reports.filter(_ == frequentPair)
3 lineage = frequent.getLineage()
4 input = lineage.goBackAll()
5 input.collect().foreach(println)

Fig. 5 Input lines with the most frequent error

single step backward or forward—at the stage boundary
level—is supported by the goBack and goNext, respec-
tively.

These tracing methods behave similarly to a native RDD
transformation, in that they return a new LineageRDD cor-
responding to the trace point, without actually evaluating the
trace. The actual tracing occurs when a native Spark RDD
action, such as count or collect, is called, following the
lazy evaluation semantics of Spark. For instance, if a user
wants to trace back to an intermediate point and view the
data, then she could execute a series of goBack transfor-
mations followed by a native Spark collect action. The
compute method, defined in the native RDD class, is used
to introspect the stage dataflow for data lineage capture.

Since LineageRDD extends the native Spark RDD inter-
face, it also includes all native transformations. Calling a
native transformation on aLineageRDD returns a newnative
RDD that references the (base) data at the given trace point
and the desired native transformation that will process it.
This mode of operation forms the basis of our replay support.
Users can trace back from a given RDD to an intermediate
point and then leverage nativeRDD transformations to repro-
cess the referenced data.We highlight these Titian extensions
in the following example.

Example 1 Backward tracing Titian is enabled by wrapping
the native SparkContext (sc in line 1 of Fig. 1) with a
LineageContext. Figure 5 shows a code fragment that
takes the result of our running example in Fig. 1 and selects
the most frequent error (via native Spark sortBy and take
operations), and then traces back to the corresponding input
lines and prints them.

Next, we describe an example of forward tracing from
input records to records in the final result that the input
records influenced.

Example 2 Forward tracing Here, we are interested in the
error codes generated from the network sub-system, indi-
cated in the log by a “NETWORK” tag.
Again, assume the program in Fig. 1 has finished execut-
ing. Figure 6 selects log entries related to the network layer
(line 1) and then performs a goNextAll (line 3) on the
corresponding LineageRDD reference (obtained in line 2).
Finally, the relevant output containing the error descriptions
and counts is printed (line 4).

123

M. Interlandi et al.

1 network = lines.filter(_.contains("NETWORK"))
2 lineage = network.getLineage()
3 output = lineage.goNextAll()
4 output.collect().foreach(println)

Fig. 6 Network-related error codes

1 lineage = reports.getLineage()
2 inputLines = lineage.goBackAll()
3 noGuest = inputLines.filter(!_.contains("Guest"))
4 newCodes = noGuest.map(_.split("\t")(1))
5 newPairs = codes.map(word => (word, 1))
6 newCounts = pairs.reduceByKey(_ + _)
7 newRep = newCounts.map(kv => (dscr(kv._1), kv._2))
8 newRep.collect().foreach(println)

Fig. 7 Error codes without “Guest”

Provenance queries and actual computation can be inter-
leaved in a natural way, extending the possibilities to inter-
actively explore and debug Spark programs and the data that
they operate on.

Example 3 Selective replay Assume that after computing
the error counts, we traced backward and notice that many
errors were generated by the “Guest” user. We are then
interested in seeing the errors distribution without the ones
caused by “Guest.” This can be specified by tracing back
to the input, filtering out “Guest,” and then re-executing
the computation, as shown in Fig. 7. This is made possible
because native RDD transformations can be called from a
LineageRDD. Supporting this requires Titian to automat-
ically retrieve the raw data referenced by the lineage and
apply the native transformations to it. In additional follow-
on work [27], we explore ways of reusing the computation
performed during prior executions to speed-up subsequent
executions like the one shown in Fig. 7.

4 Titian internal library

Titian is our extension to Spark that enables interactive data
provenance on RDD transformations. This section describes
the agents used to introspect Spark RDD transformations to
capture and store data lineage.We also discuss howwe lever-
age nativeRDD transformations to support traces through the
data provenance via the LineageRDD interface.

4.1 Overview

Similar to other approaches [25,31,37], Titian uses agents to
introspect the Spark stage DAG to capture data lineage. The
primary responsibilities of these agents are to (1) generate
unique identifiers for each new record, and (2) associate out-

put records of a given operation (i.e., stage, shuffle step) with
relevant input records.

From a logical perspective, Titian generates new data lin-
eage records in three places:

1. Input Data imported from some external source, e.g.,
HDFS, Java collection.

2. Stage The output of a stage executed by a task.
3. Aggregate In an aggregation operation, i.e., combiner,

group-by, reduce, distinct, and join.

Recall that each stage executes a series of RDD transforma-
tions until a shuffle step is required. Stage input records could
come from an external data source (e.g., HDFS) or from the
result of a shuffle step. Input agents generate and attach a
unique identifier to each input record. Aggregate agents gen-
erate unique identifiers for each output record and relate an
output record to all input records in the aggregation opera-
tion, i.e., combiner, reduce, group-by, and join. A Spark stage
processes a single input record at a time and produces zero or
more output records. Stage agents attach a unique identifier
to each output record of a stage and associates it with the
relevant input record identifier.

Associations are stored in a table in the local Spark storage
layer (i.e., BlockManager). The schema of the table defines
two columns containing the (1) input record identifiers and
(2) output record identifiers. Tracing occurs by recursively
joining these tables.
Remark Titian captures data lineage at the stage boundaries,
but this does not prevent tracing to an RDD transformation
within a stage. Such a feature could be supported by tracing
back to the stage input and re-running the stage transfor-
mations, on the referenced intermediate data, up to the RDD
transformation of interest. Alternatively, we could surface an
API that would allow the user to mark RDD transformation
as a desirable trace point. Stage agents could then be injected
at these markers.

4.2 Capturing agents

Titian instruments a Spark dataflowwith agents on the driver,
i.e., where the main program executes. Recall that when
the main program encounters an action, Spark translates the
series of transformations, leading to the action, into aDAGof
stages. The LineageContext hijacks this step and sup-
plements the stage DAG with capture agents, before it is
submitted to the task scheduler for execution.

Table 1 lists the agents that Titian uses at each capture
point, i.e., input, stage, and aggregate. We have defined two
input agents. Both assign identifiers to records emitted from
a data source. The identifier should be meaningful to the
given data source. For instance, the HadoopLineageRDD
assigns an identifier that indicates the HDFS partition and

123

Adding data provenance support to Apache Spark

Table 1 Lineage capturing points and agents

CapturePoint LineageRDDAgent

Input HadoopLineageRDD

ParallelLineageRDD

Stage StageLineageRDD

Aggregate ReducerLineageRDD

JoinLineageRDD

CombinerLineageRDD

record position (e.g., line offset) within the partition. The
ParallelLineageRDD assigns identifiers to records based
on their location (index) in a Java Collection Object, e.g.,
java.util.ArrayList.

A Spark stage consists of a series of transformations
that process a single record at a time and emit zero
or more records. At the stage output, Titian will inject
a CombinerLineageRDD when a combiner operation is
present, or a StageLineageRDD when a combiner is not
present. Both agents are responsible for relating an out-
put record to the producer input record(s). In the case
of a StageLineageRDD, for each output record pro-
duced, it generates an identifier and associates that identifier
with the (single) input record identifier. A combiner pre-
aggregates one or more input records and generates a new
combined output record. For this case, Titian injects a
CombinerLineageRDD, which is responsible for gener-
ating an identifier for the combined output record, and
associating that identifier with the identifiers of all related
inputs.

The other two aggregate capture agents introspect the
Spark dataflow in the shuffle step used to execute reduce,
group-by, and join transformations. Similar to the combiner,
these transformations take one or more input records and
produce a new output record; unlike the combiner, join oper-
ations couldproducemore thanoneoutput record.The reduce
and group-by transformations operate on a single dataset
(i.e., RDD), while join operates on multiple datasets. The
ReducerLineageRDD handles the reduce and group-by
aggregates, while JoinLineageRDD handles the join opera-
tion. TheReducerLineageRDD associates an output record
identifier with all input record identifiers that form the aggre-
gate group. JoinLineageRDD associates an output (join)
record identifier with the record identifiers on each side of
the join inputs.
Remark Joins in Spark behave similar to those in Pig [36] and
Hive [40]: records that satisfy the join are grouped and co-
located together based on the “join key.” For this reason, we
have categorized JoinLineageRDD as an aggregate, even
though this is not the case logically.

Fig. 8 Job workflow of the running example after adding the lineage
capture points

Example 4 Dataflow instrumentation Returning to our run-
ning example, Fig. 8 shows the workflow after the instru-
mentation of capture agents. The Spark stage DAG consists
of two stages separated by the reduceByKey transforma-
tion. The arrows indicate how records are passed through the
dataflow. A dashed arrow means that records are pipelined
(i.e., processed one at a time) by RDD transformations, e.g.,
FilterRDD, andMapRDD in stage 1. A solid arrow indicates
a blocking boundary, where input records are first materi-
alized (i.e., drained) before the given operation begins its
processing step, e.g., Spark’s combiner materializes all input
records into an internal hash table, which is then used to
combine records in the same hash bucket.

The transformed stage DAG includes (1) a
HadoopLineageRDD agent that introspects Spark’s native
HadoopRDD, assigns an identifier to each record, and asso-
ciates the record identifier to the record position in the
HDFS partition; (2) a CombinerLineageRDD that assigns
an identifier to each record emitted from the combiner (pre-
aggregation) operation and associates it with the (combiner
input) record identifiers assigned byHadoopLineageRDD;
(3) aReducerLineageRDD that assigns an identifier to each
reduceByKey output record and associates it with each
record identifier in the input group aggregate; and finally
(4) a StageLineageRDD that assigns an identifier to each
stage record output and relates that identifier back to the
respective reduceByKey output record identifier assigned
by ReducerLineageRDD.

4.3 Lineage capturing

Data lineage capture begins in the agent compute method
implementation, defined in the native Spark RDD class, and
overridden in the LineageRDD class. The arguments to this
method (Fig. 4) include the input partition—containing the
stage input records—and a task context. The return value
is an iterator over the resulting output records. Each agent’s
computemethod passes the partition and task context argu-

123

M. Interlandi et al.

ments to its parent RDD(s) computemethod, and wraps the
returned parent iterator(s) in its own iterator module, which
it returns to the caller.
Input to Output Identifier Propagation Parent (upstream)
agents propagate record identifiers to a child (downstream)
agent. Two configurations are possible: (1) propagation
inside a single stage and (2) propagation between consec-
utive stages. In the former case, Titian exploits the fact
that stage records are pipelined one at a time through the
stage transformations. Before sending a record to the stage
transformations, the agent at the input of a stage stores the
single input record identifier in the task context. The agent
at the stage transformation output associates output record
identifiers with the input record identifier stored in the task
context. Between consecutive stages, Titian attaches (i.e.,
piggybacks) the record identifier on each outgoing (shuffled)
record. On the other side of the shuffle step, the piggybacked
record identifier is grouped with the other record identifiers
containing the same key (from the actual record). Each group
is assigned a new identifier, which will be associated with all
record identifiers in the group.

Next, we describe the implementation of each agent iter-
ator.

– HadoopLineageRDD’s parent RDD is a native
HadoopRDD. In its iterator, HadoopLineageRDD
assigns an identifier to each record returned by the
HadoopRDD iterator and associates the identifier with
the record position in the (HDFS) partition. Before
returning the raw record to the caller, it stores the record
identifier in the task context, which a downstream agent
uses to associate with its record outputs.

– StageLineageRDD introspects the Spark dataflow on
the output of a stage that does not include a combiner. In
each call to its iterator, it (1) calls the parent iterator, (2)
assigns an identifier to the returned record, (3) associates
that identifier with the input record identifier stored in
the task context, e.g., by HadoopLineageRDD, and (4)
returns the (raw) record to the caller.

– CombinerLineageRDD and ReducerLineageRDD
introspect the combiner and reducer (also group-by)
transformations, respectively. These transformations are
blocking whereby the input iterator is drained into a hash
table, using the record key to assign a hash bucket, which
form the output group records. The agents introspect this
materialization to build a separate internal hash table that
associates the record keywith the record identifier, before
passing the raw record to the native materialization.
After draining the input iterator, the native iterator oper-
ation begins returning result records, i.e., post-combiner,
reducer, or group-by operations. For each result record,
the agents assign it an identifier and look up the result
record key in the (previously created) internal hash table,

which returns the list of input record identifiers that
formed the group. The agents can then associate the result
record identifier with the list of input record identifiers.

– JoinLineageRDD behaves similarly, except that it oper-
ates on the two input iterators that join along a key. Each
input iterator returns a record that contains the join key,
which the agent uses to build an internal hash table that
maps the key to the input record identifier contained in
the shuffled record. After draining the input iterator, the
native JoinRDD begins to return join results. For each
result record, the agent assigns an identifier to it and asso-
ciates that identifier with the input record ids stored in its
internal hash table by the join key.

Discussion The above agents are able to capture lineage for
most Spark operations, including filter,map,flatMap,
join,reduceByKey,groupByKey,union,distinct,
and zipPartitions transformations. Additionally, we
areworking on efficient support for iterative programs,which
can generate large amount of lineage; one could skip captur-
ing lineage for some iterations in order to reduce the total
amount of lineage, as done in [10], but the current version of
Titian does not support this optimization strategy.

4.4 Lineage storage

Titian stores all data lineage in the BlockManager, which
is Spark’s internal storage layer for intermediate data. As
discussed, agents are responsible for associating the out-
put records of an operation (i.e., stage, combiner, join) with
the corresponding inputs. These associations are stored in
a BlockManager table, local to the Spark node running the
agent. Titian agents batch associations in a local buffer that is
flushed to theBlockManager at the end of the operation, i.e.,
when all input records have been fully processed. We com-
pact the lineage information (i.e., identifiers and associations)
into nested format exploiting optimized data structures (such
as RoaringBitmaps [9]) when possible. In Sect. 5, we show
that Titian maintains a reasonable memory footprint with
interactive query performance. If the size of the data lineage
grows too large to fit in memory, then Titian asynchronously
materializes it to disk using native Spark BlockManager
support.

Finally, althoughTitian is specifically optimized for online
(interactive) provenance queries, we also allowusers to dump
the data lineage information into an external store (e.g.,
HDFS) for postmortem analysis.

4.5 Querying the lineage data

The lineage captured by the agents is used to trace through
the data provenance at stage boundaries. From a logical
perspective, tracing is implemented by recursively joining

123

Adding data provenance support to Apache Spark

input output
233 a
240 b
300 c
.

input output
a (0, 4)
c (0, 4)
d (1, 4)
e (0, 400)
.

input output
(0, 4) 4
(1, 4) 4

(0, 400) 400
.

input output
4 0

400 1
.

input output
(0, 4) 4
(1, 4) 4
.input output

a (0, 4)
c (0, 4)
d (1, 4)
.

input output
233 a
240 c
.

Fig. 9 A logical trace plan that recursively joins data lineage tables,
starting from the result with a “Failure” code, back to the input log
records containing the error

1 failure = reports.filter(_._1 == "Failure")
2 lineage = failure.getLineage()
3 input = lineage.goBackAll()
4 input.collect().foreach(println)

Fig. 10 Tracing backwards the “Failure” errors

lineage association tables stored in the BlockManager. A
LineageRDD corresponds to a particular position in the
trace, referencing some subset of records at that position.
Trace positions occur at agent capture points, i.e., stage
boundaries. Although our discussion here only shows posi-
tions at stage boundaries, we are able to support tracing at
the level of individual transformations by simply injecting a
StageLineageRDD agent at the output of the target trans-
formation, or by executing the transformations leading up to
the target, starting from the relevant stage input records.Next,
we describe the logical trace plan for our running example.

Example 5 Logical trace plan Figure 9 is a logical view of
the data lineage that each agent captures in our running exam-
ple from Fig. 2. At the top of the figure, we show some
example data corresponding to a log stored in HDFS, along
with intermediate data and final results. Recall, in the original
running example, we were counting the number of occur-
rences for each error code. Here, we would like to trace back
and see the actual log entries that correspond to a “Failure”
(code = 4), as shown by the Spark program in Fig. 10.

The output is referenced by the reports RDD reference,
which we use to select all “Failure” record outputs and then
trace back to the input HDFS log entries. Returning to Fig. 9,
the goBackAll transformation (Fig. 10 line 3) is imple-

Fig. 11 Distributed tracing plan that recursively joins data lineage
tables distributed over three nodes. Each operation is labeled with a
number

mented by recursively joining the tables that associate the
output record identifiers to input record identifiers, until we
reach the data lineage at the HadoopLineageRDD agent.
Notice that the inter-stage record identifiers (i.e., between
CombinerLineageRDD and ReducerLineageRDD)
include a partition identifier, which we use in Fig. 11 to
optimize the distributed join that occurs during the trace
(described below). Figure 9 includes three joins—along with
the intermediate join results—used to (recursively) trace back
to the HDFS input.

The logical plan generated by recursively joining lineage
points is automatically scheduled in parallel by Spark. Fig-
ure 11 shows the distributed version of the previous example.
Each agent data lineage is stored across three nodes. The
trace begins at theStage agent on nodeC, referencing result
records with error code = 4. Tracing back to the stage input
involves a local join (operation 1 in Fig. 11). That join result
will contain record identifiers that include a partition iden-
tifier, e.g., identifier (0,4) indicates that an error code = 4
occurs in partition 0, which we know to be on node A. We
use this information to optimize the shuffle join between
the Combiner and Reducer agents. Specifically, the par-
tition identifier is used to direct the shuffling (operation 2)
of the lineage records at the Reducer agent to the node that
stores the given data partition, e.g., partition 0 → A and
partition 1 → B. The tracing continues on nodes A and B
with local joins (operations 3 and 4) that lead to the HDFS
partition lines for error code = 4.

The directed shuffle join described above required mod-
ifications to the Spark join implementation. Without this
change, the Spark native join would shuffle the data lineage
at both the Combiner and Reducer agents (in operation 2),
since it has no knowledge of partitioning information. This
would further impact the subsequent join with the Hadoop
data lineage, which would also be shuffled. In Sect. 5, we
show that our directed shuffle join improves the tracing per-

123

M. Interlandi et al.

1 failure = reports.filter(_._1 == "Failure")
2 input = failure.getLineage().goBackAll()
3 input.filter(_.contains("Zookeeper")
4 .collect().foreach(println)

Fig. 12 Native transformations on LineageRDDs

formance by an order of magnitude relative to a native join
strategy.

4.6 Working with the raw data

LineageRDD references a subset of records produced by a
native RDD transformation.When a native RDD transforma-
tion is called from a LineageRDD reference, Titian returns
a native RDD that will apply the given transformation to the
raw data referenced by the LineageRDD.

Figure 12 illustrates this feature by tracing back to log
files that contain a “Failure” and then selecting those that are
specific to “Zookeeper” before printing.
As before, we start the trace at reports and select the result
containing the “Failure” error code. We then trace back
to the HDFS log file input, which is referenced by the
input LineageRDD. Calling filter on the input refer-
ence returns a native Spark FilterRDD that executes over
the HDFS log file records that contain “Failure” codes,4 and
from that selects the ones containing “Zookeeper” failures.
These are then returned to the driver by the collect action
and printed.

The ability to move seamlessly between lineage data and
raw data, in the same Spark session, enables a better interac-
tive user experience. We envision this new Spark capability
will open the door to some interesting use cases, e.g., data
cleaning and debugging program logic. It also provides ele-
gant support for transformation replay from an intermediate
starting point, on an alternative collection of records.

4.7 Discussion

Fault tolerance Our system is completely transparent to the
Spark scheduler and in fact does not break the fault tolerance
model of Spark. During the capturing phase, data lineage is
materialized only when a task has completed its execution.
In case of failure, the captured data lineage is not retained,
and will be regenerated by the subsequently scheduled task.
During the tracing phase, LineageRDDs behave as a normal
RDD and follow the native Spark fault tolerance polices.
Alternative designs Debugging systems such as IG [36] and
Arthur [12] tag data records with a unique transforma-

4 We optimize this HDFS partition scan with a special HadoopRDD
that reads records at offsets provided by the data lineage.

tion id and piggyback each tag downstream with its related
record. This strategy can be easily implemented in Titian:
each capturing agent generates the lineage data without stor-
ing it; lineage references are instead appended to a list and
propagated downstream. The final stage capture point will
then store the complete lineage data. In Sect. 5, we will
compare this strategy (labeled as Titian-P, for propagation)
against the original (distributed) Titian (Titian-D) and a naïve
strategy that saves all the lineage into a unique centralized
server (Titian-C). In Titian-C, agents write data lineage over
an asynchronous channel to a centralized lineage master,
which stores the data lineage in its local file system. The
lineage master executes tracing queries, using a centralized
version of LineageRDD, on the local data lineage files.
Both Titian-C and Titian-P trade-off space overheads, by
aggregating lineage data into a more centralized storage,
for a faster tracing time. An interesting area of future work
would be an optimizer that is able to estimate the lineage
size and select a version of Titian to use (centralized, decen-
tralized, or propagated) based on a size estimate of the data
lineage.

Beyond the above alternative designs, we considered con-
figurations in which coarse-grained lineage (e.g., partition-
level lineage) is registered, instead of fine-grained (record-
level) lineage. This design leads to an interesting trade-off
between job performance and provenance query time and
is pointed out by an astute reviewer. We initially opted for
fine-grained lineage for two reasons. First, we wanted to
identify the point in the design space that would lead to an
overall minimum provenance query time. Second, coarse-
grained lineage would require significant changes to Spark,
since record-level lineage would need to be lazily generated
during provenance query time. Nevertheless, an exploration
of these design alternatives would be an interesting line of
future work, which could involve sophisticated scheduling
algorithms that mask the effects of lazily generating the
relevant fine-grained lineage while executing provenance
queries.

5 Experimental evaluation

Our experimental evaluationmeasures the added overhead in
a Spark job caused by data lineage capture and the response
time of a trace query. We compare Titian to Newt [31] and
RAMP [25]. This required us to first integrate Newt with
Spark. We also developed a version of RAMP in Spark using
part of the Titian infrastructure. As in the original version,
our version of RAMPwrites all data lineage to HDFS, where
it can be processed off-line. Moreover, in order to show the
raw data in a trace, RAMP must also write intermediate data
to HDFS. We report the overhead of RAMP when writing
only the data lineage. Saving only the data lineage might be

123

Adding data provenance support to Apache Spark

relevant when a user simply wants to trace back to the job
input, e.g., HDFS input.

5.1 General settings

Datasets and queries We used a mixed set of workloads
as suggested by the latest big data benchmarks [41]. All
datasets used were generated to a specific target size. Fol-
lowing [25], we generated datasets of sizes ranging from
500MB to 500GB seeded by a vocabulary of 8000 terms that
were selected from aZipf distribution.We used these datasets
to run two simple Spark jobs: grep for a given term and
word-count. Additionally, we ported eight PigMix “latency
queries” (labeled “L#”) to Spark for evaluating more com-
plex jobs. These queries are categorized into three groups:
aggregate queries (L1, L6, L11), join queries (L2, L3, L5),
and nested plans queries (L4, L7). We only report on a rep-
resentative query from each class based on the worst-case
performance. The input data for these queries were created
using the PigMix dataset generator, configured to produce
dataset sizes ranging from 1GB to 1TB.
Hardware and software configurations The experiments
were carried out on a cluster containing 16 i7 − 4770
machines, each running at 3.40GHz and equipped with
4 cores (2 hyper-threads per core), 32GBofRAMand1TBof
disk capacity. The operating system is a 64bit Ubuntu 12.04.
The datasets were all stored in HDFS version 1.0.4 with a
replication factor of 3. Titian is built on Spark version 1.2.1,
which is the baseline version we used to compare against.
Newt is configured to use MySQL version 5.5.41. Jobs were
configured to run two tasks per core (1 task per hyper-thread),
for a potential total of 120 tasks running concurrently.

We report on experiments using three versions of Titian:

1. Titian-D stores data lineage distributed in the
BlockManager local to the capture agent.

2. In Titian-P all agents, other than the last, propagate data
lineage downstream. The final agent stores on the local
SparkBlockManager the complete lineage of each indi-
vidual data record as a nested list.

3. Titian-C agents write the lineage to a centralized server.

We expect Titian-P and Titian-C to be less efficient than
Titian-D during the capturing phase, but more effective in the
tracing when the lineage data remain relatively small. Titian-
D is the best strategy for capture and outperforms Titian-P
when tracing very large datasets, while Titian-C hits scala-
bility bottlenecks early for both capture and trace workloads.
In both Newt and RAMP, data lineage capture and tracing is
distributed. Therefore, in our evaluation, we compare Titian-
D to Newt and RAMP and separately compare Titian-D to
Titian-P and Titian-C.

5.2 Data lineage capture overheads

Our first set of experiments evaluate the overhead of captur-
ing data lineage in a Spark program. We report the execution
time of the different lineage capturing strategies in relation
with the native Spark run-time (as a baseline). We executed
each experiment ten times, and among the ten runs, we com-
puted the trimmedmean by removing the top two and bottom
two results and averaging the remaining six. In Titian(D and
P), we store the data lineage using the SparkBlockManager
with setting memory_and_disk, which spills the data lin-
eage to disk when memory is full.
Grep and word-count Figure 13a reports the time taken to
run the grep job on varying dataset sizes. Both axes are in
logarithmic scale. Under this workload, Titian and RAMP
incur similar overheads, exhibiting a run-time of no more
than a 1.35× the baseline Spark. However, Newt incurs a
substantial overhead: up to 15× Spark. Further investiga-
tion led to the discovery of MySQL being a bottleneck when
writing significant amounts of data lineage. Figure 13b com-
pares the three versions of Titian executing the same job. On
dataset sizes below 5GB, the three versions compare simi-
larly. Beyond that, the numbers diverge considerably, with
Titian-C not able to finish beyond 20GB.

Figure 13c reports the execution time for the word-count
job. For this workload, Titian-D offers the least amount of
overhead w.r.t. normal Spark. More precisely, Titian-D is
nevermore than1.3×Spark for datasets smaller than100GB,
and never more than 1.67× at larger dataset sizes. The run-
time of RAMP is consistently above 1.3× Spark execution
time, and it is 2–4× slower than normal Spark for dataset
sizes above 10GB. Newt is not able to complete the job
above 80GB and is considerably slower than the other sys-
tems. Moving to Fig. 13d, Titian-P performance is similar
to RAMP, while Titian-C is not able to handle dataset sizes
beyond 2GB.

Table 2 summarizes the time overheads in the grep and
word-count jobs for Titian-D, RAMP, and Newt. Interest-
ingly, for the Word-count workload, the run-time of RAMP
is 3.2× Spark at 50GB and decreases to 2.6× at 500GB.
This is due to the overheads associated with capturing lin-
eage being further amortized over the baseline Spark job.
Furthermore, we found that job time increases considerably
for datasets greater than 100GB due to (task) scheduling
overheads, which also occur in baseline Spark.
Space overhead In general, the size of the lineage increases
proportionally with the size of the dataset and is strictly
related to the type of program under evaluation. More specif-
ically, we found that the lineage size is usually within 30%
of the size of the input dataset (for non-iterative programs),
with the exception of word-count on datasets bigger than
90GB, where the lineage size is on average 50% of the size
of the initial dataset. In computing the space overhead, we

123

M. Interlandi et al.

Fig. 13 Lineage capturing
performance for grep and
Word-count. a Grep distributed.
b Grep Titian versions, c
Word-count distributed and d
Word-count Titian versions

 10

 100

 1000

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Spark
Titian-D

Newt
RAMP

(a)

 10

 100

 1000

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Spark
Titian-D
Titian-P
Titian-C

(b)

 100

 1000

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Spark
Titian-D

Newt
RAMP

(c)

 100

 1000

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Spark
Titian-D
Titian-P
Titian-C

(d)

Table 2 Run-time of Titian-D, RAMP, and Newt for grep and word-
count (wc) jobs as a multiplier of Spark execution time

Dataset Titian-D RAMP Newt

Grep wc Grep wc Grep wc

500MB 1.27× 1.18× 1.40× 1.34× 1.58× 1.72×
5GB 1.18× 1.14× 1.18× 1.32× 1.99× 4×
50GB 1.14× 1.22× 1.18× 3.2× 8× 29×
500GB 1.1× 1.29× 1.18× 2.6× 15× inf

took into account both the size of the actual lineage, and the
overhead introduced in the shuffle. For very large datasets
(e.g., word-count), the lineage data do not completely fit into

memory, causing it to be spilled to disk, which happens asyn-
chronously.
PigMix queries The results for Titian-D on the three PigMix
queries are consistently below 1.26× the baseline Spark job.
Figure 14a–c shows the running times for queries L2, L6,
and L7. We summarize the results for each query below.
L2 We observe that Titian-D exhibits the least amount of
overhead for all dataset sizes, with Titian-P adding slightly
more (up to 40%) overhead. Titian-C is only able to exe-
cute dataset size 1GB at around 2.5× Spark execution time.
RAMP is on par with Titian-D for 1GB and 10GB datasets.
Its running time degrades at 100GB (around 2.4× the Spark
run-time), and it is not able to complete on the 1TB dataset.
Newt incurs significant overhead throughout and is not able
to complete on the 100GB and 1TB datasets.

(a) (b) (c)

Fig. 14 Lineage capturing performance for Pigmix queries. a L2 execution time. b L6 execution time. c L7 execution time

123

Adding data provenance support to Apache Spark

Fig. 15 Tracing time for grep
and word-count. a Grep
distributed, b Grep Titian
versions. c Word-count
distributed and d Word-count
Titian versions

10-3

10-2

10-1

100

101

102

103

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Titian-D
Newt

Newt indexed

(a)

10-2

10-1

100

101

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Titian-D
Titian-P
Titian-C

(b)

10-3

10-2

10-1

100

101

102

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Titian-D
Newt indexed

(c)

10-2

10-1

100

101

102

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Titian-D
Titians-P
Titians-C

(d)

L6 Titian-D and Titian-P are able to complete this query for
all dataset sizes. Titian-D is constantly less that 1.2× Spark
execution time, while the execution time for Titian-P goes up
to 2× in the 1TB case. Titian-C is able to complete up to the
100GB dataset with a run-time ranging from 1.1× (at 1GB)
to 1.95× (at 100GB). RAMP and Newt are able to complete
up to the 100GB case, with an average running time of 1.16X
Spark in RAMP, and in Newt we see a 7× slowdown w.r.t.
Spark.
L7 The general trend for this query is similar to L2: Titian-
D and Titian-P and RAMP have similar performance on the
1GB and 10GB datasets. For the 100GB dataset, RAMP
execution time is 2.1× the baseline Spark. Titian-C can only
execute the 1GB dataset with an execution of 2.6× Spark.
Newt can only handle the 1GB and 10GB datasets at an
average time of 3.6× over baseline Spark.

5.3 Tracing

Wenow turn to the performance of tracing data lineage, start-
ing from a subset of the job result back to the input records.
We compare against two configurations in Newt: (1) that
indexes the data lineage for optimizing the trace, and (2) no
indexes are used. The later configuration is relevant since
indexing the data lineage can take a considerable amount of
time, e.g., upwards of 10min to 1h, depending on the data
lineage size.

The experiments described next were conducted as fol-
lows. First, we run the capturing job to completion. ForNewt,

the first step also includes building the index (when applica-
ble). We do not report these times in our plots. Next, we
randomly select a subset of result records, and from there
trace back to the job input. The trace from result to input is
repeated 10 times, on the same selected result, and we report
the trimmed mean. We only report on backward traces since
the forward direction, from input to output, exhibits similar
results (wewill, however, report forward tracing performance
in Sect. 6 when showing the impact of different optimiza-
tions). We do not report the results for tracing queries taking
more than 10 min. Also, for the Newt case with indexes, we
do not report results when the index building time exceeds 1
h.
Optimal spark join for tracing In Sect. 4.5, we have described
our modification to the Spark join operator to leverage the
partition identifier information embedded in the record iden-
tifier.

This optimization avoided the naïve join strategy, inwhich
the data lineage, stored in theBlockManager, would be fully
shuffled in every join. Figure 17 shows the benefits of this
optimization when tracing the data lineage from the word-
count job. The naïve join is around one order of magnitude
slower than the optimal plan up to 80GB. Beyond that, the
naïve performance degrades considerably, with the trace at
200GB taking approximately 15 min, compared to the opti-
mal 5 s. The naïve join strategy is not able to complete traces
above 200GB.
Trace grep and word-count The time to trace backward one
record for grep is depicted in Fig. 15a. In the Newt case,

123

M. Interlandi et al.

(a) (b) (c)

Fig. 16 Lineage tracing performance for PigMix queries. a L2 tracing time. b L6 tracing time. c L7 tracing time

10-2

10-1

100

101

102

103

 1 10 100

T
im

e
(s

)

Dataset Size (GB)

Naive
Optimal

Fig. 17 Naïve versus optimal plan when executing backward tracing
for word-count

the query to compute the trace backward is composed of a
simple join. Not surprisingly, when relations are indexed the
time to compute a full trace is small. When the relations are
not indexed, the time to execute the query increases to 10
min. Tracing queries over Titian-D scale linearly from 0.07
s (at 500MB) to 1.5 s (at 500GB). Figure 15b compares the
three versions of Titian. As expected, Titian-P and Titian-C
are slightly faster than Titian-D since the data lineage is more
localized and not large. Note that no tracing time is reported
for datasets bigger than 20GB for Titian-C because lineage
capturing is not able to complete (Figs. 16, 17).

Figure 15c shows the execution time for retrieving the
full lineage of a single record for word-count. Newt without
indexes is not able to complete any trace in less than 10 min.
When the data lineage is indexed, Newt is able to trace up
to the 5GB dataset, after which the index build time reached
1h. Titian-D executed the 1GB dataset trace in 0.08 s, and it
took no more than 18 s for larger datasets. In Fig. 15d Titian-
D, Titian-P and Titian-C have similar performances for small
dataset sizes, while Titian-P outperform Titian-D by a factor
of 4 for bigger sizes. As for the grep experiment, Titian-C
tracing time is available only up to 2GB.
PigMix queries Figure 14a, d, e shows the tracing time for
PigMix queries L2, L6 and L7, respectively.

L2Wewere able to execute the non-indexed Newt trace only
for the 1GB (13 s) and 10GB datasets (more than 200 s). The
indexed version maintains constant performance (5ms) up to
100GB, but failed to build the index in less than 1h for 1TB
dataset. All the Titian versions exhibit similar performance
for datasets smaller than 1TB, executing the trace in a few
hundreds of milliseconds (Titian-P has the best results for the
1GB and 10GB datasets). For the 1TB experiment, Titian-D
has the best result with 31 s, while Titian-P takes 82 s.
L6 For this aggregate query, Newt is not able to complete any
tracing query under the threshold of 600 s. The indexed ver-
sion still maintains constant performance and up to 100GB.
Titian-C is able to complete both the 1GB and 10GB work-
loads with a tracing time, respectively, of 0.25 and 0.57 s.
Titian-D and Titian-P have comparable performance up to
10GB. For 100GB, Titian-P performs relatively better than
Titian-D (0.6 vs 1.9 s), while for the 1TB, Titian-D is 6 times
faster (53 against 337 s).
L7 The trend for this query follows the one of query L6. For
instance, Titian-D takes 52 s for tracing one record over the
1TB dataset, while Titian-P takes 150 s.
Discussion For small datasets, in general Titian-P per-
forms better than Titian-D. However, as expected, for bigger
datasets Titian-P performance decrease considerably. Recall,
tominimize thememory footprint, Titian-D andTitian-P save
lineage in nested format, i.e., a single top-level identifier is
used to reference the set of identifier corresponding to the
record group. The un-nesting (dereferencing) of the data lin-
eage is an expensive operation for tracing through aggregate
and join operators, especially in the Titian-P case, because
data are more centralized, resulting in many more derefer-
ence operations per-task.

5.4 Show me the data

Measuring the efficiency of replay includes the performance
of tracing, retrieving the data records referenced by the lin-

123

Adding data provenance support to Apache Spark

 0.01

 0.1

 1

 10

 100

 1 10 100

Ti
m

e
(s

)

Dataset Size (GB)

Intermediate Data

Fig. 18 Data retrieval performance, i.e., the cost of retrieving one inter-
mediate (raw) data record from its lineage identifier

eage, and the cost of re-computation. In this section, we focus
on the performance of the second step, i.e., raw data retrieval.

Figure 18 depicts the time of retrieving an intermediate
data record from its lineage identifier. This operation involves
reading the intermediate data partition, and scanning up to
the data record location. As the figure shows, for datasets
smaller than 70GB, this operation takes less than 1s. The
time increases to 27 s for the 500GB case. This increase in
access time is due to the increased size of the intermediate
data partitions as we scale up the experiment.

6 Optimizations

This section describes our extensions to the Spark Titian
library for improving the performance of lineage queries,
i.e., tracing through the data lineage. Over the course of the
last year, we observed that programmers are often interested
in tracing from a few records that they deem to be of inter-
est, e.g., outliers and crash culprits. As a result, only a small
amount of lineage records must be examined at query time.
However, the Spark platform only supports a full-scan access
method.5 Therefore, our first optimization extends Spark
with an access method for retrieving lineage records more
efficiently than native Spark plans.

Additionally, we recognized that for trace queries, the
majority of scheduled tasks do not contribute to the result.
For instance, consider Fig. 19,which contains amodified ver-
sion of the backward tracing example of Fig. 11. The query
begins at node C where the Stage agent is locally joined
with theReducer agent (operation 1). The output of the join
is distributed using the direct shuffle (operation 2), which
uses the partition identifier (embedded in the lineage identi-
fier) to direct lineage records to the corresponding Reducer
partition, which will be joined with the Combiner partition

5 Apache Spark SQL has the ability to direct these full scans to certain
data partitions only.

Fig. 19 A modified version of the backward query of Fig. 11. The
Spark scheduler is not aware of the records distribution inside partitions;
therefore, the join of operation 3 on Node A is scheduled even if does
not produce any output

(operation 3). Note that the output of the join in operation 1
only contains identifiers with partition id = 1. As a conse-
quence, no record is shuffled to Node A, yielding an empty
output for the join in operation 3 on Node A. Regardless,
the Spark native scheduler assigns a task to all partitions,
including Node A,6 because Spark lacks the run-time statis-
tics needed to determine whether a partition join is empty.
We found that for large datasets, small tracing queries incur
significant overhead from tasks that do not contribute to the
trace.

The remainder of this section describes howwe addressed
the inefficiencies mentioned above. Section 6.1 begins with
some background on how native Spark schedules and exe-
cutes tasks over data partitions. Section 6.2 introduces a new
custom Spark scheduler, called Hyperdrive, which uses par-
tition statistics to avoid scheduling tasks on partitions that
do not contribute to the trace query. In addition, Hyperdrive
decouples task execution from partitions and assigns mul-
tiple partitions to a single task, yielding similar benefits to
reusing threads acrossmultipleHTTP requests in SEDA[42].
Finally, Sect. 6.3 describes an access method that efficiently
retrieves the relevant lineage ids in a partition without having
to scan all the records.

6.1 Spark internals

ASpark cluster is composed of twonode types: amaster node
and a set of worker nodes. The master node is responsible
for instantiating the driver program and scheduling tasks that

6 The task assigned to Node A performs a non-trivial amount of work,
i.e., it builds a hash table on theCombiner partition that will be probed
with the Reducer partition, which, however, will be empty after the
directed shuffle.

123

M. Interlandi et al.

Fig. 20 A representation of the two-level scheduling logic of Spark:
the DAGScheduler is taking track of current and already executed
stages (i.e., the stages containing gray transformations in the figure); the
TaskScheduler launches on worker nodes the set of tasks composing
a stage. Worker nodes install tasks on empty slots. Tasks execute a set
of transformations on the data partition assigned to them

execute transformations on data partitions via worker nodes.
Each worker node runs an Executor run-time instance that
provides the facilities required to spawn and execute tasks
on data partitions.

Figure 20 depicts how Spark internally operates on a
cluster composed by a master node and two worker nodes.
Spark employs a two-level scheduling approach: a top-level
DAGScheduler is responsible for (1) translating the RDD
transformations defined by the user program into a DAG
of stages; (2) batching scheduling stages according to data
dependencies; and (3) instantiating tasks to execute each
stage in parallel. A task is an execution unit that evaluates
the sequence of transformations in a stage on a data partition.
A lower-level TaskScheduler assigns tasks to Executors
based on the data locality requirements (if available) and
Executor resources (i.e., slots).

On worker nodes, an Executor runs Spark tasks on core
slots. Each task executes a stage on a provided input data par-
tition. Records composing each data partition are presented
to a task in the form of an iterator, i.e., Spark follows the
Volcano-style [17] dataflow model. When the partition itera-
tor is drained, the Executor sends the task status, along with
any action results, to themaster, which forwards the informa-
tion to the TaskScheduler. When all tasks for a given stage
are acknowledged, the DAGScheduler schedules the next
stage, until the final program result (i.e., action) is generated.

6.2 Hyperdrive

TheSpark schedulermaintains a one-to-onemappingbetween
data partitions and executing tasks. This design simplifies
scheduling policies (e.g., for locality and stragglers) and

Fig. 21 With Hyperdrive, tasks are now unrelated to a particular parti-
tion. Partitions are accumulated into a queue that is concurrently drained
by a pool of (persistent) long running tasks. Partition statistics are col-
lected into the master so that better scheduling decisions can be made

fault handling (e.g., replay the task), but can place signifi-
cant overheads on the scheduler for stages that contain many
lightweight tasks, i.e., tasks that produce little or no output
results. This section introduces our Hyperdrive scheduler,
which uses persistent tasks7 to reduce the scheduling over-
head of lightweight tasks by extending the task lifetime over
multiple data partitions. Perhaps interestingly, we are able to
support persistent tasks without sacrificing fault tolerance or
common scheduling policies.

Figure 21 presents the main components of the Hyper-
drive scheduler, which includes (1) a partition queue on each
Executor; (2) support for persistent tasks onExecutor slots;
and (3) a PartitionScheduler on the master that collects
partition statistics and supports partition-based scheduling
policies. The partition queue (henceforth, queue) dispatches
partitions to persistent tasks (henceforth, task) running on the
Executor. When a task finishes processing a given partition,
it requests a new partition from the queue. The Executor
(worker) coordinates with the PartitionScheduler (mas-
ter) to fill its queue with stage input partitions. Tasks
are decommissioned when the queue is empty, and the
PartitionScheduler has no further outstanding stage par-
titions to assign.

Partition statistics from task outputs are collected by the
Executor and sent to thePartitionScheduler during regular
heartbeat internals. Presently, we track partition sizes, which
we use to detect and avoid the scheduling of empty parti-
tions in tracing queries. The PartitionScheduler also uses
the partition size information to make partition assignments
to Executor queues. Specifically, (1) we group partitions
into batches of similar sizes to improve cluster utilization,

7 The term persistent is used to indicate that the lifetime of a task spans
beyond a single data partition.

123

Adding data provenance support to Apache Spark

 1

 10

 100

 1000

 10000 100000

Ti
m

e
(s

)

Tasks

Spark
Hyperdrive

Hyperdrive w/ stats

Fig. 22 Comparison between Spark scheduler and Hyperdrive. We
report two versions of Hyperdrive: one where empty tasks are sched-
uled as normal tasks (labeled as “Hyperdrive”) and one where empty
tasks are identified using partition statistics and not scheduled (labeled
as “Hyperdrive w/ stats”)

and (2) inside each batch, we order the partitions by size to
improve the performance under skew. Empty partitions are
pruned from this assignment.
Summary The modifications that Hyperdrive introduces to
Spark were motivated by the tracing workloads that we
have observed in Titian. Specifically, tracing from a narrow
set of results (e.g., crash culprit or outlier) generates many
intermediate empty partitions that clearly do not join with
corresponding upstream (non-empty) partitions. Regardless,
the native Spark scheduler will spawn tasks to execute such
joins. Hyperdrive optimizes such workloads through (1)
persistent tasks that reduce the overheads associated with
lightweight tasks; (2) more aggressive scheduling policies
enabled by the decoupling of tasks from partitions. For
instance, part of scheduling duties can be offloaded to worker
machines by batch-scheduling partitions; and (3) partitions
statistics are collected at run-time and used to avoid execut-
ing tasks that produce empty results, and for load balancing
heavyweight (or skewed) data partitions by scheduling them
early.

Figure 22 depicts the performance gains from these two
optimizations in a mini-benchmark on a three-stage job,
where each stage is executing empty tasks. Notably, Hyper-
drive with empty partition scheduling is up to 6× (2170 vs
315 s for 256,000 tasks8) faster than the normal Spark sched-
uler. If we completely avoid the execution of empty partitions
by using partition statistics, Hyperdrive becomes 30× faster
(2170 vs 65 s, again for 256,000 tasks).Note that native Spark
is not able to complete the benchmark for 512,000 tasks.
Further optimizations Hyperdrive offers a few other notable
optimizations that we briefly describe.

8 256,000 tasks correspond to approximately the scheduling workload
generated by a dataset of about 16TB (using the default Spark settings).

– When there are many empty partitions, single-threaded
components in the native Spark scheduler (i.e.,
DAGScheduler) can become overwhelmed. In order to
alleviate this bottleneck, we made some multi-threaded
extensions to these components.

– In an early version of Hyperdrive, we observed starving
taskswaiting on partition assignments and data loads.We
were able tomitigate this problem through double buffer-
ing, often used in external sorting andhashing algorithms.

– We implemented a work stealing mechanism to address
situations in which Executor partition queues become
unbalanced. However, we found that the required coor-
dination logic introduces a non-negligible overhead,
whereby less aggressive batching policies aremore effec-
tive in avoiding load unbalance. High-speed networks
may prove this approach to be more viable.9

6.3 Optimizing lineage access

The native Spark record iterator forces each task to perform
a linear scan over the full partition. However, we have infor-
mation (embedded in lineage identifiers) that can be used to
directly identify the exact records of interest within a parti-
tion. To take advantage of this extra knowledge, we extended
Sparkwith a partition accessmethod that supports filter push-
down and indexing.
Filter pushdown Spark stores cached records in the
BlockManager as arrays of record objects. Our lineage iden-
tifiers contain the index at which the specific lineage record is
stored in this array. To exploit this information, we extended
theBlockManagerAPIwith a filter pushdown predicate that
returns an iterator to the records of interest and avoids the cost
of deserializing other records.
Indexing InCombinerLineageRDD agents, lineage records
are stored in a nested format because of the grouping
operation performed by the combiner. In order to further
boost lineage id retrieval in these agents, we have imple-
mented an hash-based index that maps a record key to the
BlockManager array indexes corresponding to the lineage
records in the group. The filter pushing technique is then used
to efficiently retrieve the lineage records in the group.
Discussion The implementation of our filter uses the order
in which lineage identifiers are generated during the capture
phase. Additionally, record keys are hash-indexed at com-
biner outputs, i.e., record keys form the index key, which
references the corresponding combiner input lineage iden-
tifiers. These two design choices make our access method
relevant for backward traces only. Supporting forward traces
would require additional secondary indexes that would con-
sume a significant amount of space and time overhead
to build during lineage capture. Therefore, we abandoned

9 Our experimental cluster was equipped with a 1Gbps Ethernet.

123

M. Interlandi et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

100 200 300 400 500

Ti
m

e
(s

)

Dataset Size (GB)

Titan
Titian+hyp+acc

Fig. 23 Backward tracing comparison of Titian with and without opti-
mizations for word-count

this approach since forward traces are less common than
backward traces in our applications, e.g., determining failure-
inducing inputs during debugging. However, the Hyperdrive
scheduler optimization (described in Sect. 6.2) is relevant to
both tracing directions, and in fact, in the next section we
will see major performance improvements for forward trac-
ing queries as well.

6.4 Evaluation

In this section, we assess the performance of Titian with the
optimizations previously described. Our experiments consist
of the same queries used in Sect. 5, with the exception of grep
which already showed good performance in Sect. 5.We avoid
dataset sizes less than 100GB since tracing time is less than
a few seconds. Section 6.4.1 presents experiments for back-
ward tracingwhere the benefits of both scheduling and access
method optimizations can be observed. Section 6.4.2 con-
cludeswith forward tracing experiments showing the benefits
of Hyperdrive only. The experimental setting is the same as
described in Sect. 5: we run the initial query once, followed
by a tracing query for one record, executed ten times. We
plot the trimmed mean computed over the ten executions.

6.4.1 Backward tracing

Word-count Figure 23 depicts the comparison between Titian
with and without optimizations, respectively, labeled as
“Titian+hyp+acc” and “Titian.” As the figure shows, Titian
with optimizations achieves almost a 2× improvement for
100GB (0.44 vs 0.84 s) and up to a 10× improvement for
the 400GB and 500GB datasets (0.88 compared to 11.3 s,
and 1.31 vs 16.5 s, respectively).
PigMix queries The comparison for queries L2, L6, and L7
is depicted in Fig. 24. For the smaller dataset (100GB), both
approaches perform similarly (only for L6, the optimized
version is more than 3× faster, 0.48 compared to 1.93 s). For
larger datasets, we observe higher benefits. For L6 and L7, in
particular, the optimized Titian is at least 10× faster than the
non-optimized version. More specifically, for L7 with 1TB,
optimized Titian takes only 2.9 s to trace one record back-
ward, compared to approximately 52 s for non-optimized
Titian. In general, with the new optimizations Titian never
takes more than 6 s to trace backward from a single record.
Lineage capture overhead We found that indexing at com-
biner outputs does not introduce any major overhead during
lineage capturing. For example, for the world count scenario,
indexing introduces an average overhead of 14% w.r.t. un-
optimized (regular) Titian execution. Hyperdrive is enabled
only at tracing time; therefore, no additional overhead is
introduced at capturing time by scheduler optimizations.

6.4.2 Forward tracing

Word-count In this scenario, the performance of Titian with-
out optimizations are close to the one already discussed in
Sect. 5.3. As shown in Fig. 25, Titian with Hyperdriver is
uniformly faster, by an average factor of 2×. For instance, at
500GB Titian takes 15.4 s, compared to Titian with Hyper-
drive, which takes 7.5 s. Note that for the same query in the
backward case, because of the access method optimizations,
tracing a record takes 2.8 s in the worst case, i.e., forward

(a) (b) (c)

Fig. 24 Backward tracing comparison of Titian with and without optimizations for PigMix queries. a L2. b L6. c L7

123

Adding data provenance support to Apache Spark

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

100 200 300 400 500

Ti
m

e
(s

)

Dataset Size (GB)

Titan
Titian+hyp

Fig. 25 Forward tracing comparison of Titianwith andwithout Hyper-
drive for word-count

tracing is about 2 to 3 times slower than backward tracing
for word-count.
PigMix queries Forward tracing for the PigMix queries takes
about 2–3more time than backward tracing for regular Titian.
For instance, tracing a record forward for L6 on a 1TBdataset
takes approximately 116 s (Fig. 26b), whereas tracing back-
ward from one record takes 53 s. Similarly, for query L7,
tracing forward takes up to 3× more time than tracing back-
ward, as shown in Fig. 26c for a 1TB dataset: tracing forward
from one record takes 119 s, whereas tracing backward from
one record takes 52 s. Nevertheless, the Hyperdrive sched-
uler offers significant improvements to forward traces. For
instance, we observed for 1TB a 15× improvement for L6
(7.2 vs 116 s), and 13× improvement for L7 (9.4 vs 119 s).

7 Related work

There is a large body of work that studies techniques for
capturing and querying data lineage in data-oriented work-
flows [2,3,7,11,24,33]. Data provenance techniques have
also been applied in other fields such as fault injection [1],
network forensics [46], data integration and exchange [15,

18,29], and distributed network systems analysis [47]. In this
paper, we have compared Titian against the approaches rel-
evant to DISC workflows [25,31].

Inspector gadget (IG) [37] defines a general framework
for monitoring and debugging Apache Pig programs [36].
IG introspects the Pig workflow with monitoring agents. It
does not come with full data lineage support, but rather it
provides a framework for tagging records of interest, as they
are passed through theworkflow. In this setting, programmers
can embed code in the monitoring agents that tag records
of interest, while IG is responsible for passing those tags
through to the final output.

Arthur [12] is a Spark library that can re-execute (part
of) the computation to produce the lineage information on
demand. Although such an approach introduces zero over-
head on the target dataflow (i.e., no data lineage is captured
during the initial query execution), it sacrifices the ability
to provide interactive tracing queries. Similarly to IG (and
to Titian-P), Arthur uses tagging techniques to generate and
propagate lineage data when it is requested after the initial
execution.

A common pattern for provenance systems is to use differ-
ent languages for querying the data and querying the lineage
[3,30]. In our system,we instead provide a lightweight exten-
sion of the transformations already provided by Spark. In this
way, we are able to provide users with a uniform language for
data and lineage analysis. To our knowledge, only Glavic et
al. [14] provided a similar feature, in the context of relational
database systems. This capability allowed us to build on top
of Titian a set of debugging features [19,21,22] that devel-
opers can natively use to analyze their Big Data applications.

In the database domain, several systems have recently
started to address the interesting problem of explaining
anomalous results by devising lineage fragments having
some sort of “influence” on the outlier result. Meliou et
al. pioneered this research area by introducing the concept of
degree of responsibility to identify tuples, seen as potential

(a) (b) (c)

Fig. 26 Forward tracing comparison of Titian with and without Hyperdrive for PigMix queries. Although data access optimizations do not apply
for this set of experiments, Hyperdrive is still able to provide up to 10× improvement w.r.t. normal Titian. a L2, b L6 and c L7

123

M. Interlandi et al.

causes, that are responsible for answers and non-answers to
queries [32]. The Scorpion systemfinds outliers in the dataset
that have the most influence on the final outcome [43]. The
Scorpion approach is restricted to simple queries with aggre-
gates and no join operations. Roy et al. overcome the limit
of Scorpion in generating explanations over a single table
only [38]. From our perspective, we deem these explana-
tion systems as high-level applications of data provenance,
and in fact they share many similarities with our automated
fault localization service provided in BigDebug [19,20].
However, while they focus on finding tuples that maxi-
mize the influence over a set of records of interest, the goal
of automated fault localization is to generate the minimal
failure-inducing set of records. Moreover, the above systems
mainly target specific set of queries and structured data, and
therefore, their approach is not applicable to generic pro-
grams containing, for example, arbitrary UDFs.

More recently,Chothia et al. [10] implemented data prove-
nance capabilities in a predecessor system to Naiad [35].
Again, different from Titian, their approach is more focused
on how to provide semantically correct (and minimal) expla-
nations of outputs through replay, which is much more
efficient to support in a differential dataflow system. In con-
trast, we have shown how data provenance support can be
efficiently supported in a (distributed) DISC system like
Apache Spark.

8 Conclusion and future work

We began this work by leveraging Newt for data provenance
support in Apache Spark. During this exercise, we ran into
some usability and scalability issues, mainly due to Newt
operating separately from the Spark run-time. Thismotivated
us to build Titian, a data provenance library that integrates
directly with the Spark run-time and programming interface.

Titian provides Spark programmers with the ability to
trace through the intermediate data of a program execu-
tion. Titian’s programming interface extends the Spark RDD
abstraction, making it familiar to Spark programmers and
allowing it to operate seamlessly through the Spark interac-
tive terminal. We introduced several optimizations allowing
Titian to execute tracing queries at interactive speeds: our
experiments show tracing times constantly below 10 s even
for terabyte-sized datasets.Webelieve theTitianSpark exten-
sion will open the door to a number of interesting use cases:
we have already discussed here and in otherworks [19,21,22]
how Titian can be leveraged to implement big data pro-
gramming debugging features; additional use cases are data
cleaning [26], large-scale outlier detection, and exploratory
data analysis. Titian is publicly available [6] and can be used
stand-alone or through the debugging features provided by
BigDebug.

In the future, we plan to further integrate Titian both
vertically with the many Spark high-level libraries, such
as GraphX (graph processing) [16], MLlib (machine learn-
ing) [34] and Spark SQL [4]; and horizontally with other
DISC systems such as Apache Flink [13] and Apache Aster-
ixDB [5]. We envision that each library and system will
motivate certain optimization strategies and data lineage
storage requirements, e.g., how lineage can be efficiently
generated and stored in a streaming system, or how trac-
ing queries spanning different systems or libraries can be
effectively supported.

Another interesting topic we are currently exploring is
how to summarize provenance information both from the
usability perspective (the output of a tracing query may con-
tain thousands of records, making it impossible to conduct a
manual inspection), and space efficiency perspective.

Acknowledgements Titian is supported through Grants NSF IIS-
1302698 and CNS-1351047, and U54EB020404 awarded by the
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
through funds provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative (www.bd2k.nih.gov). We would also like to thank
our industry partners at IBM Research Almaden and Intel for their gen-
erous gifts in support of this research.

References

1. Alvaro, P., Rosen, J., Hellerstein, J.M.: Lineage-driven fault injec-
tion. In: SIGMOD, pp. 331–346 (2015)

2. Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T., Stoy-
anovich, J., Tannen, V.: Putting lipstick on pig: enabling database-
style workflow provenance. VLDB 5(4), 346–357 (2011)

3. Anand,M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently
querying scientific workflow provenance graphs. In: EDBT, pp.
287–298 (2010)

4. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K.,
Meng, X., Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.:
Spark SQL: relational data processing in spark. In: SIGMOD, pp.
1383–1394 (2015)

5. Asterixdb. https://asterixdb.apache.org/
6. Bigdebug. sites.google.com/site/sparkbigdebug/
7. Biton, O., Cohen-Boulakia, S., Davidson, S.B., Hara, C.S.: Query-

ing and managing provenance through user views in scientific
workflows. In: ICDE, pp. 1072–1081 (2008)

8. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks:
a flexible and extensible foundation for data-intensive computing.
In: ICDE, pp. 1151–1162 (2011)

9. Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap per-
formance with roaring bitmaps. Softw. Pract. Exp. 46(5), 709–719
(2016)

10. Chothia, Z., Liagouris, J., McSherry, F., Roscoe, T.: Explaining
outputs inmodern data analytics. Proc.VLDBEndow.9(12), 1137–
1148 (2016)

11. Cui, Y., Widom, J.: Lineage tracing for general data warehouse
transformations. VLDBJ 12(1), 41–58 (2003)

12. Dave, A., Zaharia, M., Shenker, S., Stoica, I.: Arthur: Rich post-
facto debugging for production analytics applications. Tech. Rep.
(2013)

13. Flink. https://flink.apache.org/

123

www.bd2k.nih.gov
https://asterixdb.apache.org/
https://sites.google.com/site/sparkbigdebug/
https://flink.apache.org/

Adding data provenance support to Apache Spark

14. Glavic, B., Alonso, G.: Perm: Processing provenance and data on
the same data model through query rewriting. In: ICDE, pp. 174–
185 (2009)

15. Glavic, B., Alonso, G., Miller, R.J., Haas, L.M.: TRAMP: under-
standing the behavior of schema mappings through provenance.
PVLDB 3(1), 1314–1325 (2010)

16. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J.,
Stoica, I.:Graphx: graphprocessing in a distributed dataflow frame-
work. In: OSDI, pp. 599–613 (2014)

17. Graefe, G., McKenna, W.J.: The volcano optimizer generator:
extensibility and efficient search. In: ICDE, pp. 209–218 (1993)

18. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update
exchange with mappings and provenance. In: Proceedings of the
33rd International Conference on Very Large Data Bases, VLDB
’07, pp. 675–686. VLDB Endowment (2007)

19. Gulzar, M.A., Han, X., Interlandi, M., Mardani, S., Tetali, S.D.,
Millstein, T., Kim,M.: Interactive debugging for big data analytics.
In: 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16). USENIX Association, Denver, CO (2016)

20. Gulzar,M.A.,Han,M.I.X., Li,M., Condie, T., Kim,M.:Automated
debugging in data-intensive scalable computing. In: Proceedings
of the Seventh ACM Symposium on Cloud Computing, SoCC ’17.
ACM, New York (2017)

21. Gulzar,M.A., Interlandi,M., Condie, T., Kim,M.: Bigdebug: inter-
active debugger for big data analytics in apache spark. In: FSE, pp.
1033–1037 (2016)

22. Gulzar,M.A., Interlandi,M., Yoo, S., Tetali, S.D., Condie, T.,Mill-
stein, T., Kim, M.: Bigdebug: debugging primitives for interactive
big data processing in spark. In: ICSE, pp. 784–795 (2016)

23. Hadoop. http://hadoop.apache.org
24. Heinis, T.,Alonso,G.:Efficient lineage tracking for scientificwork-

flows. In: SIGMOD, pp. 1007–1018 (2008)
25. Ikeda, R., Park, H., Widom, J.: Provenance for generalized map

and reduce workflows. In: CIDR, pp. 273–283 (2011)
26. Interlandi, M., Tang, N.: Proof positive and negative in data clean-

ing. In: ICDE, pp. 18–29 (2015)
27. Interlandi, M., Tetali, S.D., Gulzar, M.A., Noor, J., Condie, T.,

Kim, M., Millstein, T.: Optimizing interactive development of
data-intensive applications. In: Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pp. 510–522. ACM,
New York, NY, USA (2016)

28. Interlandi, M., Shah, K., Tetali, S.D., Gulzar, M.A., Yoo, S., Kim,
M., Millstein, T.D., Condie, T.: Titian: data provenance support in
spark. PVLDB 9(3), 216–227 (2015)

29. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data prove-
nance. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pp. 951–962.
ACM, New York, NY, USA (2010)

30. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data prove-
nance. In: SIGMOD, pp. 951–962 (2010)

31. Logothetis, D., De, S., Yocum, K.: Scalable lineage capture for
debugging disc analytics. In: SOCC, pp. 17:1–17:15 (2013)

32. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The com-
plexity of causality and responsibility for query answers and
non-answers. PVLDB 4(1), 34–45 (2010)

33. Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.A.: Data
lineage model for Taverna workflows with lightweight annotation
requirements. In: IPAW, pp. 17–30 (2008)

34. Mllib. http://spark.apache.org/mllib
35. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P.,

Abadi,M.:Naiad: a timely dataflow system. In: SOSP.ACM(2013)
36. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig

latin: a not-so-foreign language for data processing. In: SIGMOD,
pp. 1099–1110. ACM (2008)

37. Olston, C., Reed, B.: Inspector gadget: a framework for custom
monitoring and debugging of distributed dataflows. PVLDB 4(12),
1237–1248 (2011)

38. Roy, S., Suciu, D.: A formal approach to finding explanations for
database queries. In: SIGMOD, pp. 1579–1590 (2014)

39. Spark. http://spark.apache.org
40. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony,

S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution
over a map-reduce framework. VLDB 2(2), 1626–1629 (2009)

41. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia,
Z., Shi, Y., Zhang, S., Zheng, C., Lu, G., Zhan, K., Li, X., Qiu, B.:
Bigdatabench: a big data benchmark suite from internet services.
In HPCA, pp. 488–499 (2014)

42. Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-
conditioned, scalable internet services. In: SOSP, pp. 230–243
(2001)

43. Wu, E., Madden, S.: Scorpion: explaining away outliers in aggre-
gate queries. Proc. VLDB Endow. 6(8), 553–564 (2013)

44. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster com-
puting. In: NSDI (2012)

45. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-
inducing input. TSE 28(2), 183–200 (2002)

46. Zhou, W., Fei, Q., Narayan, A., Haeberlen, A., Loo, B.T., Sherr,
M.: Secure network provenance. In: SOSP, pp. 295–310 (2011)

47. Zhou, W., Sherr, M., Tao, T., Li, X., Loo, B.T., Mao, Y.: Efficient
querying andmaintenance of network provenance at internet-scale.
In: SIGMOD, pp. 615–626 (2010)

123

http://hadoop.apache.org
http://spark.apache.org/mllib
http://spark.apache.org

	Adding data provenance support to Apache Spark
	Abstract
	1 Introduction
	2 Background
	2.1 Apache Spark
	2.2 Data provenance in DISC
	2.3 Newt and RAMP instrumentation

	3 Data provenance in Spark
	4 Titian internal library
	4.1 Overview
	4.2 Capturing agents
	4.3 Lineage capturing
	4.4 Lineage storage
	4.5 Querying the lineage data
	4.6 Working with the raw data
	4.7 Discussion

	5 Experimental evaluation
	5.1 General settings
	5.2 Data lineage capture overheads
	5.3 Tracing
	5.4 Show me the data

	6 Optimizations
	6.1 Spark internals
	6.2 Hyperdrive
	6.3 Optimizing lineage access
	6.4 Evaluation
	6.4.1 Backward tracing
	6.4.2 Forward tracing

	7 Related work
	8 Conclusion and future work
	Acknowledgements
	References

