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Abstract

The field of mobile health (mHealth) has the
potential to yield new insights into health and
behavior through the analysis of continuously
recorded data from wearable health and activity
sensors. In this paper, we present a hierarchi-
cal span-based conditional random field model
for the key problem of jointly detecting discrete
events in such sensor data streams and segment-
ing these events into high-level activity sessions.
Our model includes higher-order cardinality fac-
tors and inter-event duration factors to capture
domain-specific structure in the label space. We
show that our model supports exact MAP in-
ference in quadratic time via dynamic program-
ming, which we leverage to perform learning
in the structured support vector machine frame-
work. We apply the model to the problems of
smoking and eating detection using four real data
sets. Our results show statistically significant
improvements in segmentation performance rel-
ative to a hierarchical pairwise CRF.
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1. Introduction
A small number of behaviors including physical inactiv-
ity, poor diet, tobacco use, and alcohol consumption are
key risk factors in a wide array of chronic conditions in-
cluding obesity, cancer, diabetes and cardiovascular dis-
ease (McGinnis et al., 2002; Mokdad et al., 2004; DeVol
et al., 2007). These behaviors have traditionally been stud-
ied using self-report data; however, self-report has well-
known limitations including data sparsity, recall bias, and
high burden on study subjects (Shiffman et al., 2008). The
emerging field of mobile health (mHealth) seeks to replace
the use of self report data with continuously recorded phys-
iological and activity-related data streams collected using
wearable sensors. While mHealth technologies have the
potential to yield novel insights into health and behavior,
significant data analysis challenges must first be overcome
(Kumar et al., 2013).

In this paper, we address the key problem of detecting dis-
crete events in wearable sensor data streams and segment-
ing these events into high-level activity sessions. This prob-
lem is central to several important mHealth tasks including
smoking detection (Ali et al., 2012; Saleheen et al., 2015)
and eating detection (Parate et al., 2014; Thomaz et al.,
2015). In these domains, the events correspond to individ-
ual smoking puffs or eating gestures, the high-level activity
sessions correspond to smoking a complete cigarette or eat-
ing a meal, and data streams may be available from a vari-
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Figure 1. Figure (a) shows a factor graph model for a standard linear chain CRF over a length-four sequence. (b) shows a two-level
hierarchical CRF where the first level labels are grouped into fixed size blocks at the second level, which has linear chain structure.
Figure (c) shows a two-level version of the proposed model, which includes a quadratic number of second level span variables, one for
each possible span. The global coordinating factor that ensures a valid segmentation connects to all second-level span variables and is not
pictured. Figures (d)-(f) show example segmentations and labelings for a length four sequence. Our model (c) represents a distribution
over both active spans and labels conditioned on the input features.

ety of sensors including respiration chest bands, wrist-worn
actigraphy devices (smart watches), and other devices.

Since the underlying sensor waveforms in these domains
are typically quasi-periodic, existing approaches to the
event detection problem are based on performing an un-
supervised segmentation of the raw sensor data stream into
periods (respiration cycles, hand gestures, etc.), followed
by the application of standard machine learning methods to
independently classify each period as corresponding to an
event of interest (smoking puff, eating gesture, etc.) or not
(Ali et al., 2012; Saleheen et al., 2015; Parate et al., 2014;
Thomaz et al., 2015).

By contrast, the segmentation problem is significantly more
complex due to the fact that the segments can have arbi-
trary lengths, and the events that comprise a segment can
have heterogeneous labels (e.g.: the respiration cycles that
occur during a smoking segment are a mixture of both
smoking puffs and non-puffs) (Ali et al., 2012; Saleheen
et al., 2015). As a result, prior work within the mHealth
research community has either ignored the session delin-
eation problem completely, used methods based on ad-hoc
post-processing of detections, or stacked simple segmen-
tation models like linear chain conditional random fields
(CRFs) on top of the detected events (Ali et al., 2012; Sale-
heen et al., 2015; Parate et al., 2014; Thomaz et al., 2015).

The primary contributions of this paper are the develop-
ment and evaluation of a novel hierarchical span-based
CRF model and a quadratic-time exact maximum a pos-
teriori (MAP) inference algorithm that can solve the event
detection and segmentation problems jointly. The proposed
model incorporates higher-order factors to enforce a valid
nested segmentation, and includes a variety of additional
higher-order factors to enable the expression of key do-
main structure including the distribution of inter-event du-

rations, and the number of events per segment. These fac-
tors make the proposed model significantly more expres-
sive than standard pairwise CRF models used for segmen-
tation in computer vision and other areas (Shotton et al.,
2006). Additionally, this domain structure generalizes to
multiple mHealth detection problems, obviating the need
for custom or ad-hoc solutions.

The proposed inference algorithm is based on dynamic
programming and is closely related to inference in semi-
Markov CRFs (Sarawagi & Cohen, 2004). We leverage
this MAP inference algorithm to learn the model param-
eters within the structured support vector machine (SSVM)
framework (Tsochantaridis et al., 2005). We note that the
model we propose may thus be equivalently viewed as a
higher-order CRF or an SSVM. We choose to describe the
model as a CRF and represent it graphically using a factor
graph (Kschischang et al., 2001).

The remainder of the paper is organized as follows. In
Section 2, we describe related work. In Section 3 we de-
scribe the proposed model and inference method. In Sec-
tion 4, we present experiments on synthetic data and four
real mHealth data sets covering two application domains:
eating detection and smoking detection.

2. Related Work
In this section, we describe related discriminative struc-
tured prediction models. Linear-chain CRFs (see Figure
1(a)) were introduced by Lafferty et al. (2001) for struc-
tured prediction problems in natural language processing.
They capture first-order dependencies between the labels in
the sequence. CRF models with local pairwise dependen-
cies have also been used in the computer vision literature
to segment images (Shotton et al., 2006; Verbeek & Triggs,
2008).



Hierarchical Span-Based Conditional Random Fields

The limitation to first-order local dependencies is clearly
restrictive and more general models have subsequently
been proposed. Skip-chain CRFs generalize linear chain
models by allowing for longer-range pairwise dependen-
cies between labels in the sequence (Sutton & McCallum,
2006, p.117). An alternative approach to inducing long
range dependencies is to use a hierarchical CRF. A two-
level example is shown in Figure 1(b). Multi-level versions
of this type of model have been applied in the computer
vision literature using a two-step procedure that first con-
structs a nested segmentation of an image using unsuper-
vised methods, and then labels the fixed segmentation hier-
archy (Reynolds & Murphy, 2007; Plath et al., 2009).

Our proposed modeling framework (see Figure 1(c)) is in-
stead closer to the semi-Markov CRF model introduced
by Sarawagi & Cohen (2004). Their approach includes a
global factor for ensuring that only valid segmentations are
considered by the model. Our model uses related global co-
ordination factors to define a probability distribution over a
three-level label hierarchy. Both our model and the semi-
CRF model are able to define features on segments. How-
ever, the semi-CRF assumes that the labels within a seg-
ment are homogeneous, while our model allows restricted
sequences of heterogeneous labels as described in the next
section.

Our model is also related to the CRF context free gram-
mar (CRF-CFG) model introduced by Finkel et al. (2008).
Given a context free grammar specified by a collection of
productions, the CRF-CFG framework associates weighted
feature functions with each production. The productions,
weights, and feature functions together induce a distribu-
tion over parse trees of an input sequence. The feature
functions can depend on features of the input sequence
spanned by the sub-tree rooted at the node where the pro-
duction is applied, as well as the left and right arguments
of a production.

While the CRF-CFG model can represent nested structures
of the type we consider in this work using an appropriate
grammar, the restricted local dependence of the CRF-CFG
feature functions on the productions (labels) makes it cum-
bersome to incorporate higher-order factors. Of particular
interest in our applications is the use of cardinality factors
that count the number of labels of a given type that sit be-
low a given segment. Our approach to incorporating these
higher-order factors is closely related to the approach to
handling such factors introduced by Smith & Eisner (2008).

In terms of inference, the semi-Markov CRF model sup-
ports quadratic-time exact MAP inference based on dy-
namic programming while producing a flat segmentation
with homogeneous labels within segments (Sarawagi &
Cohen, 2004). The CRF-CFG model supports exact MAP
inference for the most likely parse tree via the inside-

outside dynamic programming, but requires cubic time be-
cause it allows for more general structures (Finkel et al.,
2008). The inference algorithm we propose is also based
on dynamic programming and like the semi-Markov CRF
it has quadratic complexity. However, the model we pro-
pose produces a multi-level segmentation with a restricted
heterogeneous labeling within segments while incorporat-
ing other higher-order factors on segments, including car-
dinality factors.

Finally, related models have been proposed for activity
recognition from video streams. Tang et al. (2012) and
Sung et al. (2012) both propose models with a single layer
of segmentation that allow for heterogeneous sequence la-
bels beneath a segment; however, both models assume
Markov structure within and between segments and do not
model any higher-order structure.

3. Model, Inference and Learning
In this section we introduce our conditional random field
model for hierarchical nested segmentation (HNS) of event
sequences. As mentioned in the introduction, the sensor
data streams of interest in this work are quasi-periodic and
are pre-segmented into periods in an unsupervised man-
ner as part of pre-processing the raw data. The model we
introduce in this section assumes that each input stream
is discretized into a sequence of n individual periods. In
this work we focus on offline analysis of pre-recorded data
streams. We refer to each point in the resulting discrete
sequence as an event. For our application to mHealth, we
define an HNS model with two segmentation layers: the
first layer represents inter-event intervals and the second
layer represents complete activity sessions.

In the case of smoking, the events are respiration cycles and
the labels correspond to puffs and non-puffs, a positively
labeled inter-event interval corresponds to an inter-puff in-
terval, and a positively labeled session corresponds to the
time span in which a single cigarette is smoked. In the
case of eating, the events correspond to individual gestures
and the labels are eating gestures and non-eating gestures.
A positively labeled inter-event interval corresponds to the
interval between eating gestures. A positively labeled ses-
sion corresponds to the time span in which a single meal
or snack is eaten. Importantly, smoking and eating ses-
sions can contain both positive and negative labels below
them, while non-smoking and non-eating session only con-
tain negative labels.

3.1. Notation and Model Definition

The event layer of our proposed model consists of one la-
bel variable Y (1)

i ∈ Y(1) = {0, 1} for each position i in
the length n input sequence. Each additional layer consists
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of O(n2) variables Y (l)
jk ∈ Y(l) = {∅, 0, 1} that provide a

label for a span of the input sequence starting at position j
and ending at position k. Y(l) is the set of possible labels at
level l. Importantly, for l > 1, Y(l) contains a special null
label, ∅, denoting that a span is not used in the segmen-
tation. This allows the model to define a joint probability
distribution over active segments and labels. Additionally,
we may have features available at any layer of the model.
We denote the features associated with the base layer label
variable Y (1)

i by X
(1)
i and the features associated with Y (l)

jk

by X
(l)
jk . As stated above, for activity segmentation we use

the event level and two segmentation levels.

The joint probability of the label variables given the fea-
ture variables in a CRF is defined by a collection F of non-
negative factor functions. Let Y represent the collection
of all label variables in the model, Y represent the set of
all possible joint labelings, X represent the collection of
all feature variables, and θ represent the model parameters.
The joint probability of an assignment to the label variables
given the feature values is defined below where the parti-
tion function Zθ(x) sums over all possible joint segmen-
tations and labelings. The following sections describe the
factors used in the proposed model.

Pθ(Y = y|X = x) =
1

Zθ(x)

∏
φ∈F

φθ(y,x) (1)

3.2. Local Factors

We use local factors in each of the three levels of our model
to incorporate features, enforce structural constraints, and
model structural regularities.

Event Level: The first level labels in the model Y (1)
i ∈

{0, 1} indicate the event type for individual events. The
first level features X(1)

i are generally extracted from the
input stream spanned by event i. The model includes stan-
dard log-linear feature factors ψ(1)

i (y) = exp(w
(1)
y x

(1)
i )

between the features and the labels. These features are task
specific and depend on the sensing modalities used. We
also constrain the labels on the bottom level to be negative
if the labels in the second level are negative using a hard
factor π(1)

i .

π
(1)
i =

{
0 if Y (1)

i = 1 and ∃j≤i≤k s.t. Y (2)
jk = 0

1 otherwise

Inter-Event Level: The positive mid-level inter-event span
variables Y (2)

jk ∈ {0, 1, ∅} are defined to start on a positive
event label, and end before the next positive event label.
In our applications, the feature vector X(2)

jk consists of a
one-hot encoding of the duration of the binned inter-event
intervals. These spans have standard log-linear feature fac-

tors ψ(2)
jk (y) = exp(w

(2)
y x

(2)
jk ) between the features and the

span labels.

The constraint that the label of the first event j beneath
a positive inter-event interval Y (2)

jk must be positive is en-

coded via the hard label position factor π(2)
jk . We also re-

quire that the labels on the inter-event intervals match those
of the session spans they nest under as encoded by the fac-
tors Φ

(2)
jk .

π
(2)
jk =

{
1 if Y (2)

ij = 1, Y
(1)
i = 1, and ∀i<k≤jY (1)

k = 0

0 otherwise

Φ
(2)
jk =


1 if Y (2)

jk 6= ∅ and ∃i≤j,k≤l s.t. Y (3)
il 6= ∅

and Y (2)
jk = Y

(3)
il

0 otherwise

Session Level: At the top level of the model, Y (3)
jk ∈

{0, 1, ∅} labels the span starting at event j and ending at
event k. These spans represent complete activity sessions.
The valid labels are positive, negative, or null. In the case
of smoking, if Y (3)

jk = 1, then the model predicts a smok-
ing session starting at event j and ended at event k. If
Y

(3)
jk = 0, the model predicts a non-smoking session be-

tween events j and k. If Y (3)
jk = ∅, the span from j to k is

not used in the segmentation.

At the top level of the model, we include a cardinality factor
κ
(3)
jk on the count c of the number of positive event labels

contained within the session (equivalent to the number of
positive inter-event intervals). This factor is defined via a
function h(c;ω) : N → R. We implement this function as
a table look-up h(c;ω) = ωc. The factor function is shown
in detail below.

κ
(3)
jk = exp

[Y
(3)
jk = 1]h

k−1∑
j′=j

k∑
k′=j′+1

[Y
(2)
j′k′ = 1];ω


We also require that adjacent active session spans have op-
posite labels so that top level sessions are not fragmented
into multiple spans. This is implemented via the within-
level factor Ω

(3)
ij as shown below.

Ω
(3)
ij =

{
0 if Y (3)

ij 6= ∅ and ∃k st Y (3)
ij = Y

(3)
j+1k

1 otherwise

3.3. Global Factors

Enforcing the nested segmentation property requires two
sets of high-order factors. First, every label variable Y (1)

i

must be covered by exactly one non-null span variable Y (l)
jk

at each level l > 1. This is enforced using a binary-valued
factor S(l) as shown below where ∃=1 means “there exists
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α(1)(j, k)=

{
ψ
(1)
j (1) if j = k

α(1)(j, k−1)ψ
(1)
k (0) k > j

α(2)(j, c)=


1 if j = n+ 1

max
j≤k≤n

max
c∈{1,..,C}

α(1)(j, k)ψ
(2)
jk (0)eωcα(2)(k+1, c) if c = 0

max
j≤k≤n

α(1)(j, k)ψ
(2)
jk (1)α(2)(k+1, c−1) if c > 0

Algorithm 1. Dynamic program for inference in the HNS model.

exactly one”. This ensures that the labeling at level l forms
a valid segmentation with no overlapping segments and no
gaps in the segmentation. There exists one such factor for
each segmentation level in our model.

S(l) =

{
1 if ∀ i ∃=1 (j, k) s.t. j ≤ i ≤ k and Y (l)

jk 6= ∅
0 otherwise

N (l) =


1 if ∀ (j, k) s.t. Y (l)

jk 6= ∅, ∃ p > j, q < k

s.t. Y (l−1)
jp 6= ∅ and Y (l−1)

qk 6= ∅
0 otherwise

Second, to enforce the nesting property, we require
that the span boundaries at level l align with the span
boundaries at level l − 1 for l = 2, 3. The fac-
tor N (l) shown above ensures that each endpoint of a
non-null span variable will align with an endpoint of
a non-null span variable in the layer below it. The
complete set of factors defining the model is thus
F = {S(2), S(3), N (2), N (3), ψ

(1)
i , ψ

(2)
jk , ψ

(3)
jk , π

(1)
jk , π

(2)
jk ,

Φ
(2)
jk , κ

(3)
jk ,Ω

(3)
ij } for all 1 ≤ i ≤ n, all 1 ≤ j ≤ k ≤ n.

3.4. Inference

Due to the special nested structure of the model and the
hard constraints imposed, it is possible to run exact MAP
inference in the three layer HNS model in time quadratic in
the length n of the input sequence. In Algorithm 1, we give
the dynamic program recursions for computing the unnor-
malized joint probability of the MAP solution. The algo-
rithm consists of two related recursions. The first recursion
α(1)(j, k) computes the energy contribution of all valid
joint assignments to the bottom level labels Y (1)

j through

Y
(1)
k , taking into account the features and inter-event span

constraints.

The second recursion α(2)(j, c) computes values for the
inter-event intervals and the sessions simultaneously, tak-
ing into account the hard constraints and cardinality factor.
The two indices are the position in the sequence j and the
value for the cardinality factor c. The value α(2)(j, c) cor-
responds to the unnormalized probability of the MAP seg-
mentation of positions j through n starting with a segment
of cardinality c (c = 0 implies a negative segment).

From top to bottom, the three cases in α(2)(j, c) are the
recursion base case, which holds if j = n + 1, the case
where we are in a top-level span with a negative label (c =
0), and the case where we are in a top-level span with a
positive label and cardinality c ≥ 1. When c = 0, the
next session must be positive due to the Ω(3) factor, so we
must maximize over both the length of the current segment
and the cardinality of the positive session that follows. We
allow at most C positive events beneath a positive segment.
When c > 0, the following inter-event segment must be the
first of c−1 subsequent positive segments, so we need only
maximize over the length of the current inter-event span.

Finally, we calculate α(3) = max{α(2)(0, 0),
maxc∈{1,..,C} e

ωcα(2)(0, c)} and retrieve the MAP
assignment as the path used to calculate α(3). This final
computation takes into account the fact that a sequence can
start with either a positive or negative session. Running
these dynamic programs has complexity O(n2C) where
C << n. The computation of the feature function values
ψ
(l)
jk (y) for all spans jk can also be computed in quadratic

time and cached, so the overall MAP inference procedure
is quadratic in the length of the input sequence. This
algorithm is similar in structure and complexity to the
inference method for the semi-markov CRF (Sarawagi &
Cohen, 2004), but allows for heterogeneous labels at the
base level, incorporates the cardinality factor, and adds an
additional layer to capture the distribution of inter-event
durations.

3.5. Learning

We learn model parameters using large margin learning
methods (Tsochantaridis et al., 2005), making our model
equivalent to a structured support vector machine (SSVM).
In the case of CRFs, the learning algorithm for SSVMs ex-
pands a working set of constraints on each iteration to in-
clude constraints derived from the MAP labeling of each
data case based on the current parameters. However, as ob-
served by Tsochantaridis et al. (2005), this method treats
all margin violations equally. Instead, we would like to pe-
nalize poor segmentations more heavily. This can be done
by scaling the margin constraints with a user defined loss
function that corresponds to the sum of the hamming loss
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Figure 2. Summary statistics of the four datasets used. Events correspond to simple actions such as hand gestures and sessions correspond
high level activities such as eating a meal. The subplots are: (a) the number of data cases, (b) the number of features, (c) the number of
negative sessions (dark) and number of positive sessions (light), (d) the number of negative events (dark) and number of positive events
(light), (e) the distribution of the number of positive events in a positive session, and (f) the distribution of the time in seconds between
positive events. For display purposes, three outliers were omitted from the T box-plot in subplot (f).

between the true and predicted segmentation at each level
when projected onto the bottom level of the model (Taskar
et al., 2004a). Using this approach requires solving a loss-
augmented MAP inference problem, which can be accom-
plished by adding two extra features to each feature vector
as shown by Taskar et al. (2004b). The time complexity of
loss augmented MAP inference thus remains quadratic.

Finally, we note that the dynamic programs presented can
be extended to perform marginal inference. Consequently,
other learning algorithms are possible including maximum
likelihood learning. We focus on maximum margin training
here as we have found that this approach results in better
performance on both smoking and eating detection.

4. Experiments and Results
In this section, we describe the details of our data, tasks,
experimental procedures, and results. All of the models
described were implemented in Python and PyStruct was
used for SSVM learning (Müller & Behnke, 2014).

Data and Tasks: We evaluate our model using synthetic
data (described later), and four real mHealth datasets. The
mPuff dataset (MP) was collected by Ali et al. (2012)
and contains respiration data from smokers recorded us-
ing a chest band sensor. The puffMarker dataset (PM) was
collected by Saleheen et al. (2015) and contains contains
data from smokers recorded using a chest band sensor and
a wrist-worn actigraphy device (accelerometer and gyro-

scope). The RisQ (RQS) dataset was collected by Parate
et al. (2014) and contains wrist-worn actigraphy data. Fi-
nally, we use the data originally published by Thomaz et al.
(2015) (T), which also contains wrist-worn actigraphy data
for eating.1 In all cases, we use the base-level discretiza-
tion presented in the original papers. For each dataset, this
results in a collection of discrete sequences which we call
data cases. The PM dataset contained data cases that were
to long to consider in a single model, so these were split
into random sized pieces with each piece containing a sin-
gle positive session. Summary statistics for each of the real
datasets are shown in Figure 2. We can see that the data sets
vary significantly in terms of their properties, including the
degree of conservation of structure in the label space (Fig-
ure 2(e-f)).

There are two tasks of interest in these datasets. Task 1
is to predict whether each event (respiration cycle or hand
gesture) corresponds to a positive event (smoking puff or
bite of food). Task 2 is to segment the events into contigu-
ous, non-overlapping sessions and to label each session as
positive (a smoking or eating session) or negative.

Features: For each of the datasets described above, we
use the event-level features originally published with the
data with the exception of PM, where we omit actigraphy

1The Thomaz et al. (2015) dataset is available at http:
//www.ethomaz.com/publications.html and all other
datasets are available from the original authors under appropriate
data use agreements.

http://www.ethomaz.com/publications.html
http://www.ethomaz.com/publications.html
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features used in the original paper which were not available
for all events. Additionally, we apply a simple non-linear
transformation to these features by finding five equal sized
percentile bins for each feature and calculating the distance
from the center of each percentile bin to the input feature
value.

In addition to features at the event level, our model allows
for the definition of features for spans. We include features
intrinsically defined at the segment level such as the dura-
tion of the segment. In our model, the duration features
for positive inter-event intervals correspond to the time be-
tween consecutive positive events within a positive session,
a quantity that tends to be conserved in these applications.

Baselines: We compare the HNS model against two
baselines: a Logistic Regression (LR) model, and the tree
structured pairwise CRF (T-CRF) shown in Figure 1(b).
The T-CRF model includes two levels of labels: session-
level labels and event-level labels. Each session-level label
corresponds to a window of events in the base sequence
(Figure 1(b) shows a model with a window size of two).
The window size is tuned as a hyper-parameter. The T-
CRF model thus provides a strong segmentation baseline
which allows for heterogeneous event labels beneath ho-
mogenous session labels, but is restricted to pairwise fac-
tors. We generate session-level features by averaging the
event-level features sitting beneath each window. The LR
model was trained using `2 regularized maximum likeli-
hood and the T-CRF model was trained using `2 regular-
ized maximum-margin methods. On Task 1 we compare
against both the LR and T-CRF models and on Task 2 we
compare only against the T-CRF model since LR does not
produce an explicit segmentation.

Testing and Hyper-Parameter Selection: We conduct
experiments using a stratified 10-fold cross-validation pro-
tocol. Specifically, we split the data cases into two groups,
one for all data cases containing positive sessions and one
for the rest, and randomize within groups. Next, we create
10 test folds so that each test fold contains approximately
the same number of data cases from each group. To select
hyper-parameter values, we perform a further stratified 10-
fold cross-validation on the training samples. We use this
cross-validation procedure for all methods. The LR hyper-
parameters were tuned to maximize event-level F1 score,
while the T-CRF and HNS hyper-parameters were tuned to
maximize segmentation accuracy. `2 regularization hyper-
parameters were tuned on a logarithmic grid and all other
hyper-parameters were tuned on a linear grid.

Performance Metrics: We assess performance for Task
1 (Labeling) using precision, recall, and F1 score, which
adjusts for the major class imbalance we face in this prob-

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
¾E

0.0

0.2

0.4

0.6

0.8

1.0

F
1

LR

T-CRF

HNS

Figure 4. F1 results for the LR, T-CRF, and HNS models on syn-
thetic data for structural standard deviation σS = 0.25 with vary-
ing amounts of event noise σE .

lem. We do not report accuracy due to strong class imbal-
ance. We compute these metrics on each of the 10 test folds
and report the mean scores as well as the standard error of
the mean. For Task 2 (Segmentation), we compare the pre-
dicted sessions to the true sessions by projecting each ses-
sion labeling onto the input sequence, and calculating the
the precision, recall, and F1 score of the projected labels.
We report the mean of each segmentation metric over the
10 test folds as well as the standard error of the mean.

Synthetic Experiments and Results: To evaluate the
performance of the HNS model under controled noise con-
ditions, we evaluated all models on a series of synthetic
datasets. For each synthetic data case, we sampled the
length of a session, the number of positive events per ses-
sion, and the number of negative events between posi-
tive events from discretized, truncated normal distributions
with standard deviation σS = 0.25. Next, we sampled
event-level features from class conditional normal distribu-
tions with means separated by unit distance, and a common
standard deviation parameter σE , which we varied to sim-
ulate different amounts of discriminative information. We
generated train, validation, and test sets containing 30, 50,
and 50 data cases of length 100 respectively.

Figure 4 shows the event level F1 score for each model ver-
sus the event standard deviation (σE). When there is little
noise in the features (σE = 0.25), all methods perform
equally well; however, the HNS model substantially out-
performs the other two models when there is there is less
information in the event features, indicating that the HNS
model can more effectively leverage higher level structure
in the data.

Real Data Results: The results from our Task 1 event
detection experiments on the mHealth benchmark datasets
are shown in Figure 3a. The HNS model performs better in
terms of average F1 score on three of the four data sets. On
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(a) Task 1: Event Detection
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(b) Task 2: Activity Segmentation

Figure 3. The top row shows Task 1 (event detection) results while the second row shows Task 2 (activity segmentation) results. From
left to right, the three panels in each row correspond to precision, recall, and F1. In each group of bars for Task 1, the models are LR,
T-CRF, and HNS. In each group of bars for Task 2, the models are T-CRF, and HNS.

the T dataset, these results are statistically significant at the
p = 0.05 level using Bonferroni correction. In addition, we
ran a paired t-test on the combined results of all datasets
and found that the HNS model achieves an improvement
over both LR and T-CRF that is statistically significant at
the p = 0.05 level, again using Bonferroni correction.

The results from the Task 2 segmentation experiments are
shown in Figure 3b. The HNS model outperforms the T-
CRF baseline in terms of F1 score on three of the four
datasets and has the same performance on the MP dataset.
The improvements range from 0.082 to 0.266 F1 and are
statistically significant at the p = 0.05 level on the PM and
T datasets. When all datasets are considered together, the
improvement in segmentation F1 over the T-CRF model is
significant at the p = 0.05 level. Finally, we note that we
ran the same set of experiments using maximum likelihood
learning for the HNS model; however, segmentation per-
formance was uniformly worse across all datasets.

Unfortunately, our results on Task 2 are not easily compa-
rable to the original papers in which the data sets appeared
as these papers do not consider the segmentation problem
directly. Additionally, on the event labeling task, Ali et al.
(2012) evaluate on rebalanced data, Saleheen et al. (2015)
use ad-hoc pre-filtering methods to form train and test sets,
and the exact data used for evaluation in Parate et al. (2014)
is not available. Our implementation of the random forest
experiment from Thomaz et al. (2015) achieves Task 1 F1

score of 0.312. This is very close to the performance of LR
on the same task indicating that performance is not limited
by the choice of a linear model, at least on the T dataset.

5. Conclusions and Future Work
In this paper, we have addressed the problem of nested hier-
archical segmentation and labeling of event sequences de-
rived from wireless on-body sensor data streams. The pri-
mary contributions of the paper are the proposal of a novel
model and an efficient MAP inference algorithm for solv-
ing both tasks jointly. We have shown that the proposed
model significantly out-performs a strong baseline consist-
ing of a pairwise tree-structured CRF designed specifically
for two-level segmentation.

In terms of future work, we note that further improvements
can likely be derived from better engineered features (or
feature learning), as well as learning per-subject models to
deal with between subject variability. More broadly, this
work can be combined with other context variables and de-
tectors for cognitive states like stress to begin modeling the
relationships between cognitive state and negative health
behaviors. Finally, there is significant interest in mov-
ing this work to the real-time setting to enable continuous
health and behavior monitoring applications.

2This number differs somewhat from the performance re-
ported in (Thomaz et al., 2015) due to differences in the train/test
splits and the way results were averaged.
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