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Abstract The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive
modeling tool for mHealth data that takes the form of events occurring at irregularly-
distributed continuous time points. However, the lack of an efficient parameter
learning algorithm for CT-HMM has prevented its widespread use, necessitating
the use of very small models or unrealistic constraints on the state transitions.
In this paper, we describe recent advances in the development of efficient EM-
based learning methods for CT-HMM models. We first review the structure of the
learning problem, demonstrating that it consists of two challenges: (1) the estimation
of posterior state probabilities and (2) the computation of end-state conditioned
expectations. The first challenge can be addressed by reformulating the estimation
problem in terms of an equivalent discrete time-inhomogeneous hidden Markov
model. The second challenge is addressed by exploiting computational methods
traditionally used for continuous-time Markov chains and adapting them to the
CT-HMM domain. We describe three computational approaches and analyze the
tradeoffs between them. We evaluate the resulting parameter learning methods in
simulation and demonstrate the use of models with more than 100 states to analyze
disease progression using glaucoma and Alzheimer’s Disease datasets.

Introduction

The analysis of mobile health data can utilize a wide range of modeling and analysis
tools for stochastic signals. One particularly attractive choice is the latent state
model, which encodes measurement signals via the temporal evolution of a hidden
state vector which emits the observations. Latent states define a level of abstraction
over measured signals. States can be defined to correspond to behavioral constructs
such as stress or craving, which are then connected to the underlying measurements
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via an observation model. The observation model also provides a means to describe
the stochastic variability in the measurement sequence. Furthermore, any prior
knowledge or constraints on the temporal evolution of the latent states can be
captured by a model of the state dynamics. The interpretability of latent state models
is an attractive feature. Since the latent states have a direct interpretation in the
context of an experiment, the examination of latent state trajectories (following
model fitting) is a potentially-powerful tool for gaining insight into complex
temporal patterns. This is particularly important if the probability distributions
obtained from latent state modeling are to be used in subsequent analysis steps,
such as adjusting the tailoring variables in a mobile health intervention.

A standard latent variable model for mobile health data is the Hidden Markov
Model (HMM). The Discrete Time HMM (DT-HMM) is widely used in speech
recognition, robotics, signal processing, and other domains. It assumes that mea-
surement data arrives at a fixed, regular sampling rate, and associates each measure-
ment sample with an instantiated hidden state variable. The DT-HMM is an effective
model for a wide range of time series data, such as the outputs of accelerometers,
gyroscopes, and photoplethysmographic sensors. However, the fixed sampling rate
assumptions that underlie the DT-HMM make it an inappropriate model choice for
data that is distributed irregularly in time, such as event data. A classic example
of a mobile health paradigm that generates event data is the use of Ecological
Momentary Assessment (EMA) to ascertain the cognitive or emotional state of a
participant. When an EMA is triggered, the participant is asked to respond to a
number of questions using a smartphone interface. Since an EMA can be triggered at
arbitrary times throughout the day, EMA data are most effectively modeled as event
data. Even when EMAs are triggered at regular intervals, the participant usually has
the option to postpone their response to the EMA (if they are driving or otherwise
unavailable), and in addition the participant can choose to provide additional EMA
datapoints at any time. In addition to EMA, many mHealth markers which are
extracted from time series sensor data, such as periods of high stress or craving,
also constitute event data since they can arise at any time.

A further disadvantage of using DT-HMMs to model event data is the fact that
transitions in the hidden state are assumed to occur at the sample times. Since event
data may be distributed sparsely in time, a more flexible model would allow hidden
state transitions to occur between observations. One potential approach to using
DT-HMMs with event data would be to set the sampling period fine enough to
describe the desired state dynamics and then use a missing data model to address
the fact that many sample times will not have an associated measurement. While
this approach is frequently-used, it has several undesirable properties. First, the
treatment of missing measurements can be both inefficient and inaccurate when
the number of observations is sparse relative to the sampling rate. On the other
hand, if the discretization is too coarse, many transitions could be collapsed into a
single one, obscuring the actual continuous-time dynamics. Second, the sparsity of
measurement can itself change over time. For example, during a demanding work
week the frequency of high stress events could be high, while during a vacation
the frequency of events could be much lower. The need to tradeoff between the
temporal granularity at which state transitions can occur and the number of missing
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Fig. 1 The DT-HMM and the CT-HMM. In the DT-HMM, the observations Ot and state
transitions St occur at fixed time intervals �t, and the states St are the only source of latent
information. In the CT-HMM, the observations Ot arrive at irregular time intervals, and there are
two sources of latent information: the states St and the transition times .t01; t

0

2; : : :/ between the
states

measurements which must be handled is a consequence of using a discrete time
model to describe an inherently sparse, continuous-time measurement process.

A Continuous-Time HMM (CT-HMM) is an HMM in which both the transitions
between hidden states and the arrival of observations can occur at arbitrary
(continuous) times [7, 13]. It is therefore suitable for modeling a wide range of event
data that is irregularly-sampled in time, including both mHealth data and clinical
measurements [3, 17, 31]. However, the additional modeling flexibility provided
by CT-HMM comes at the cost of a more complex inference procedure. In CT-
HMM, not only are the hidden states unobserved, but the transition times at which
the hidden states are changing are also unobserved. Moreover, multiple unobserved
hidden state transitions can occur between two successive observations. Figure 1
gives a graphical model comparison of the CT-HMM and a regular HMM. The
process of learning the parameters of a CT-HMM model from data is significantly
more challenging computationally than the standard DT-HMM learning problem.
There has been relatively little prior work on CT-HMM parameter learning. An
approach by Jackson directly maximizes the data likelihood [13], but this method
is limited to very small model sizes. A general Expectation-Maximization (EM)
framework for continuous-time dynamic Bayesian networks, of which CT-HMM is
a special case, was introduced in [24], but that work did not address the question of
efficient learning. In general, the lack of an efficient parameter learning method for
CT-HMM has been a barrier to the wide-spread use of this model [16], particularly
for problems with large state spaces (hundreds of states or more).

This article describes a computational framework for CT-HMM learning which
can efficiently handle a large number of states within an EM framework. It is based
on [18], but includes additional algorithmic details and analysis of the computational
cost of model learning. Further, we have improved the complexity of one of the
approaches by a factor of the number of states. We begin in section “Continuous-
Time Markov Chain” by introducing the mathematical definition of the Continuous-
Time Markov Chain (CTMC). In a CTMC, the states are directly observable
and there is no measurement process. It turns out that the key computations
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that are required for CT-HMM learning also arise in fitting CTMC models to
data [12, 21, 28]. Section “Continuous-Time Hidden Markov Model” describes the
addition of a measurement process which extends the CTMC model into a CT-
HMM, and introduces the key equations that arise in parameter learning. Multiple
approaches to the problem using EM are presented in section “EM Algorithms for
CT-HMM”. These approaches differ in the specific computational methods used in
the E-step, and represent different approaches to solving the core computational
problem that underlies EM for CT-HMM. In section “Experimental Results”, we
describe the results from an experimental evaluation of CT-HMM using both
simulation studies and real-world clinical datasets. These results demonstrate the
practical utility of CT-HMM for clinical data modeling. Note that our software
implementation is available from our project website.1

Continuous-Time Markov Chain

A continuous-time Markov chain (CTMC) is defined by a finite and discrete state
space S, a state transition rate matrix Q, and an initial state probability distribution
� . The elements qij in Q describe the rate at which the process transitions from
state i to j for i ¤ j, and qii are specified such that each row of Q sums to zero
(qi D P

j¤i qij, qii D �qi) [7]. In a time-homogeneous process, in which the qij are
independent of t, the sojourn time in each state i is exponentially-distributed with
parameter qi: fi.t/ D qie�qit with mean 1=qi. The probability that the process’s next
move is from state i to state j is given by qij=qi. If a realization of the CTMC is fully
observed, it means that one can observe every state transition time .t00; t01; : : : ; t0V0/,
and the corresponding states Y 0 D fy0 D s.t00/; : : : ; yV0 D s.t0V0/g, where s.t/ denotes
the state at time t. In that case, the complete likelihood (CL) of the data is

CL D
V0�1Y

v0D0
.qyv0 ;yv0

C1
=qyv0

/.qyv0
e�qyv0

�v0 / D
V0�1Y

v0D0
qyv0 ;yv0

C1
e�qyv0

�v0

D
jSjY

iD1

2

4
jSjY

jD1;j¤i

q
nij

ij

3

5 e�qi�i (1)

where �v0 D t0v0C1� t0v0 is the time interval between two transitions, nij is the number
of transitions from state i to j, and �i is the total amount of time the chain remains in
state i.

In general, a realization of the CTMC is observed only at discrete and irregular
time points .t0; t1; : : : ; tV /, corresponding to a state sequence Y, which are distinct
from the transition times. As a result, the Markov process between two consec-
utive observations is hidden, with potentially many unobserved state transitions.
Thus, both nij and �i are unobserved. To express the likelihood of the incomplete

1http://www.cbs.gatech.edu/CT-HMM

http://www.cbs.gatech.edu/CT-HMM
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observations, we can utilize a discrete time hidden Markov model by defining a
state transition probability matrix for each time interval t, P.t/ D eQt, where Pij.t/,
the entry .i; j/ in P.t/, is the probability that the process is in state j after time t,
given that it is in state i at time 0. This quantity takes into account all possible
intermediate state transitions and timing between i and j which are not observed.
Then the likelihood of the data is

L D
V�1Y

vD0
Pyv;yvC1

.�v/ D
V�1Y

vD0

jSjY

i;jD1
Pij.�v/

I.yvDi;yvC1Dj/ (2)

where �v D tvC1� tv is the time interval between two observations, I.�; �/ is the indi-
cator function that is 1 if both arguments are true, otherwise it is 0. Note that there
is no analytic maximizer of L, due to the structure of the matrix exponential, and
direct numerical maximization with respect to Q is computationally challenging.
This motivates the use of an EM-based approach.

An EM algorithm for CTMC learning is described in [21]. Based on Eq. (1), the
expected complete log-likelihood takes the form

jSjX

iD1

2

4
jSjX

jD1;j¤i

log.qij/EŒnijjY; OQ0�

3

5 � qiEŒ�ijY; OQ0� (3)

where OQ0 is the current estimate for Q, and EŒnijjY; OQ0� and EŒ�ijY; OQ0� are the
expected state transition count and total duration given the incomplete observation
Y and the current transition rate matrix OQ0, respectively. Once these two expectations
are computed in the E-step, the updated OQ parameters can be obtained via the M-
step as

Oqij D EŒnijjY; OQ0�

EŒ�ijY; OQ0�
; i ¤ j and Oqii D �

X

j¤i

Oqij: (4)

Now the main computational challenge is to evaluateEŒnijjY; OQ0� andEŒ�ijY; OQ0�.
By exploiting the properties of the Markov process, the two expectations can be
decomposed as [6]:

EŒnijjY; OQ0� D
V�1X

vD0
EŒnijjyv; yvC1; OQ0�

D
V�1X

vD0

jSjX

k;lD1
I.yv D k; yvC1 D l/EŒnijjyv D k; yvC1 D l; OQ0�

EŒ�ijY; OQ0� D
V�1X

vD0
EŒ�ijyv; yvC1; OQ0�
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D
V�1X

vD0

jSjX

k;lD1
I.yv D k; yvC1 D l/EŒ�ijyv D k; yvC1 D l; OQ0�

Thus, the computation reduces to computing the end-state conditioned expecta-
tions EŒnijjyv D k; yvC1 D l; OQ0� and EŒ�ijyv D k; yvC1 D l; OQ0�, for all k; l; i; j 2 S.
These expectations are also a key step in CT-HMM learning, and section “EM
Algorithms for CT-HMM” presents our approach to computing them.

Continuous-Time Hidden Markov Model

In this section, we describe the continuous-time hidden Markov model (CT-HMM)
for disease progression and our approach to CT-HMM learning.

Model Description

In contrast to CTMC, where the states are directly observed, none of the states
are directly observed in CT-HMM. Instead, the available observational data o
depends on the hidden states s via the measurement model p.ojs/. In contrast
to a conventional HMM, the observations .o0; o1; : : : ; oV/ are only available at
irregularly-distributed continuous points in time .t0; t1; : : : ; tV/. As a consequence,
there are two levels of hidden information in a CT-HMM. First, at observation
time, the state of the Markov chain is hidden and can only be inferred from
measurements. Second, the state transitions in the Markov chain between two
consecutive observations are also hidden. As a result, a Markov chain may visit
multiple hidden states before reaching a state that emits a noisy observation. This
additional complexity makes CT-HMM a more effective model for event data in
comparison to HMM and CTMC. But as a consequence the parameter learning
problem is more challenging. We believe we are the first to present a comprehensive
and systematic treatment of efficient EM algorithms to address these challenges.

A fully observed CT-HMM contains four sequences of information: the under-
lying state transition time .t00; t01; : : : ; t0V0/, the corresponding state Y 0 D fy0 D
s.t00/; : : : ; yV0 D s.t0V0/g of the hidden Markov chain, and the observed data O D
.o0; o1; : : : ; oV/ at time T D .t0; t1; : : : ; tV /. Their joint complete likelihood can be
written as

CL D
V0�1Y

v0D0
qyv0 ;yv0

C1
e�qyv0

�v0

VY

vD0
p.ovjs.tv//D

jSjY

iD1

2

4
jSjY

jD1;j¤i

q
nij

ij

3

5 e�qi�i

VY

vD0
p.ovjs.tv//

(5)

We make two simplifying assumptions. First, we assume that the observation
time is independent of the states and the state transition times. Second, we assume
that individual state trajectories are homogeneous, in that all sequences share the
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same global rate and emission parameters, which do not vary over time. With the
first assumption, we do not require any further assumptions on the distribution of
observation times. Furthermore, the observation time is not informative of the state.

We will focus our development on the estimation of the transition rate matrix
Q. Estimates for the parameters of the emission model p.ojs/ and the initial state
distribution � can be obtained from the standard discrete time HMM formula-
tion [26], but with time-inhomogeneous transition probabilities, which we describe
in section “Computing the Posterior State Probabilities”. That is, the transition rates
stay constant, but in the discrete-time formulation, the transition probabilities vary
over time.

Parameter Estimation

We now describe an EM-based method for estimating Q from data. Given a current
parameter estimate OQ0, the expected complete log-likelihood takes the form

L.Q/ D
( jSjX

iD1

2

4
jSjX

jD1;j¤i

log.qij/EŒnijjO;T; OQ0�

3

5 � qiEŒ�ijO;T; OQ0�

)

(6)

C
VX

vD0
EŒlog p.ovjs.tv//jO;T; OQ0�: (7)

In the M-step, taking the derivative of L with respect to qij yields

Oqij D EŒnijjO;T; OQ0�

EŒ�ijO;T; OQ0�
; i ¤ j and Oqii D �

X

j¤i

Oqij: (8)

The challenge lies in the E-step, where we compute the expectations of nij and �i

conditioned on the observation sequence. The expectation for nij can be expressed
in terms of the expectations between successive pairs of observations as follows:

EŒnijjO;T; OQ0� D
X

s.t1/;:::;s.tV /

p.s.t1/; : : : ; s.tV/jO;T; OQ0/EŒnijjs.t1/; : : : ; s.tV /; OQ0�

(9)

D
X

s.t1/;:::;s.tV /

p.s.t1/; : : : ; s.tV/jO;T; OQ0/

V�1X

vD1
EŒnijjs.tv/; s.tvC1/; OQ0�

(10)
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D
X

s.t1/;:::;s.tV /

V�1X

vD1
p.s.t1/; : : : ; s.tV /jO;T; OQ0/EŒnijjs.tv/; s.tvC1/; OQ0�

(11)

D
V�1X

vD1

X

s.tv/;s.tvC1/

p.s.tv/; s.tvC1/jO;T; OQ0/EŒnijjs.tv/; s.tvC1/; OQ0�

by marginalization (12)

D
V�1X

vD1

jSjX

k;lD1
p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/

EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� (13)

In a similar way, we can obtain an expression for the expectation of �i:

EŒ�ijO;T; OQ0� D
V�1X

vD1

jSjX

k;lD1
p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/

EŒ�ijs.tv/ D k; s.tvC1/ D l; OQ0�: (14)

Note that, in contrast to the CTMC case, during CT-HMM learning we cannot
observe the states directly at the observation times. Therefore, while the sum of
expectations is weighted via indicator variables in the CTMC case, the weights are
probabilities obtained through inference in the CT-HMM case.

The key to efficient computation of the expectations in Eqs. (13) and (14) is
to exploit the structure of the summations. These summations have an inner-outer
structure, which is illustrated in Fig. 2. The key observation is that the measurements
partition the continuous timeline into intervals. It is therefore sufficient to compute
the distribution over the hidden states at two successive observations, denoted
by p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/, and use these probabilities to weight
the expectation over unobserved state transitions, which we refer to as the end-
state conditioned expectations EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� and EŒ�ijs.tv/ D
k; s.tvC1/ D l; OQ0�. We present three methods that can be used to compute the
end-state conditioned expectations in section “EM Algorithms for CT-HMM”.
We now describe our approach to computing the hidden state probabilities at the
observations.
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Fig. 2 Illustration of the decomposition of the expectation calculations (Eq. 13) according to their
inner-outer structure, where k and l represent the two possible end-states at successive observation
times .t1; t2/, and i; j denotes a state transition from i to j within the time interval. pkljO represents
p.s.tv/ D kI s.tvC1/ D ljO; T; OQ0/ and nijjk; l denotes EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� in Eq. (13)

Fig. 3 Illustration of the computation of the posterior state probabilities p.s.tv / D k; s.tvC1/ D
ljO; T; OQ0/. An equivalent time-inhomogeneous HMM is formed where the state transition
probability matrix varies over time (denoted as Pv.�v/ here). ˛ and ˇ are the forward and backward
variables used in the forward-backward algorithm [26]

Computing the Posterior State Probabilities

The challenge in efficiently computing p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/ is to avoid
the explicit enumeration of all possible state transition sequences and the varying
time intervals between intermediate state transitions (from k to l).

The key is to note that the posterior state probabilities are only needed at the
times where we have observation data. We can exploit this insight to reformulate the
estimation problem in terms of an equivalent discrete time-inhomogeneous hidden
Markov model. This is illustrated in Fig. 3.

Specifically, given the current estimate OQ0, O and T, we divide the timeline into
V intervals, each with duration �v D tv � tv�1. We then make use of the transition
property of CTMC, and associate each interval v with a state transition matrix
Pv.�v/ WD e OQ0�v . Together with the emission model p.ojs/, this results in a discrete
time-inhomogeneous hidden Markov model with joint likelihood:

VY

vD1
ŒPv.�v/�.s.tv�1/;s.tv//

VY

vD0
p.ovjs.tv//: (15)
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The formulation in Eq. (15) allows us to reduce the computation of p.s.tv/ D
k; s.tvC1/ D ljO;T; OQ0/ to familiar operations. The forward-backward algo-
rithm [26] can be used to compute the posterior distribution of the hidden states,
which we refer to as the soft method. This gives the probabilities p.s.tv/ D
k; s.tvC1/ D ljO;T; OQ0/, which sum to 1 over k and l. Alternatively, the MAP
assignment of hidden states obtained from the Viterbi algorithm can provide an
approximate distribution, which we refer to as the hard method. This gives p.s.tv/ D
k; s.tvC1/ D ljO;T; OQ0/ D 1 for a single value of k and l, and p.s.tv/ D k; s.tvC1/ D
ljO;T; OQ0/ D 0 for all the others. The forward-backward and Viterbi algorithms are
then the same as in [26], except that we replace the transition matrix with Pv.�v/ for
each observation.

The hard method is potentially faster, but is less accurate in the case of
multimodal posteriors. The soft method is more accurate, but requires expectation
calculations for every k and l. Note that the hard method is only faster when the
computation of the end-state conditioned expectations for a single start and end
state is less expensive than computing them for all states, which we will see is not
always the case.

EM Algorithms for CT-HMM

Pseudocode for the EM algorithm for CT-HMM parameter learning is shown in
Algorithm 1. Multiple variants of the basic algorithm are possible, depending
upon the choice of method for computing the end-state conditioned expectations,
along with the choice of hard or soft decoding for obtaining the posterior state
probabilities in Eq. (15).

The remaining step in finalizing the EM algorithm is to discuss the computation
of the end-state conditioned expectations (ESCE) for nij and �i from Eqs. (13)
and (14), respectively. The first step is to express the expectations in integral form,
following [11]:

EŒnijjs.0/ D k; s.t/ D l;Q� D qi;j

Pk;l.t/

Z t

0

Pk;i.x/Pj;l.t � x/ dx (16)

EŒ�ijs.0/ D k; s.t/ D l;Q� D 1

Pk;l.t/

Z t

0

Pk;i.x/Pi;l.t � x/ dx: (17)

From Eq. (16), we define � i;j
k;l.t/ D R t

0
Pk;i.x/Pj;l.t � x/dx D R t

0
.eQx/k;i.eQ.t�x//j;l dx,

while � i;i
k;l.t/ can be similarly defined for Eq. (17) (see [24] for a related construction).

Three primary methods for computing � i;j
k;l.t/ and � i;i

k;l.t/ have been proposed in
the CTMC literature: an eigendecomposition based method, which we refer to as
Eigen, a method called uniformization (Unif ), and a method from Van Loan [30]
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Algorithm 1: CT-HMM Parameter Learning (Soft/Hard)
1: Input: data O D .o0; : : : ; oV/ and T D .t0; : : : ; tV/, state set S, edge set L, initial guess of Q
2: Output: transition rate matrix Q D .qij/

3: Find all time intervals between events �v D tvC1 � tv for v D 1; : : : ;V � 1, where
t1 D t0 D 0

4: Compute P.�v/ D eQ�v for each �v
5: repeat
6: Compute p.v; k; l/ D p.s.tv/ D k; s.tvC1/ D ljO; T;Q/ for all v, and the

complete/state-optimized data likelihood l by using Forward-Backward (soft) or Viterbi
(hard)

7: Use Expm, Unif or Eigen method to compute EŒnijjO; T;Q� and EŒ�ijO; T;Q�
8: Update qij D EŒnijjO;T;Q�

EŒ�ijO;T;Q�
, and qii D � P

i¤j qij

9: until likelihood l converges

for computing integrals of matrix exponentials, which we call Expm. Eigen and
Unif both involve expressing the terms Pk;i.x/Pj;l.t � x/ as summations and then
integrating the summations. Eigen utilizes an eigendecomposition-based approach,
while Unif is based on series approximations. Expm notes a connection between the
integrals and a system of differential equations, and solves the system. We describe
each method, show how to improve the complexity of the soft Eigen method, and
discuss their tradeoffs.

Across the three methods, the bottleneck is generally matrix operations, partic-
ularly matrix multiplication. Our finding is that with our improvements, soft Eigen
is the preferred method except in the case of an unstable eigendecomposition. It is
efficient due to having few matrix multiplications and it is accurate due to being
a soft method. We find in our experiments that it is very fast (see Fig. 5) and that
the stability of Eigen is usually not a problem when using random initialization.
However, in the case where Eigen is unstable in any iteration, the alternatives are soft
Expm, which has the advantage of accuracy, and hard Unif, which is often faster.
Note that one can switch back to Eigen again once the likelihood is increasing.

The Eigen Method

The calculation of the ESCE � i;i
k;l.t/ and � i;j

k;l.t/ can be done in closed-form if Q can be
diagonalized via its eigendecomposition (the Eigen method [20, 21]). Consider the
eigendecomposition Q D UDU�1, where the matrix U consists of all eigenvectors
associated with the corresponding eigenvalues of Q in the diagonal matrix D D
diag.�1; : : : ; �n/. Then we have eQt D UeDtU�1 and the integral can be written as:

�
i;j
k;l.t/ D

nX

pD1
UkpU�1

pi

nX

qD1
UjqU�1

ql ‰pq.t/ (18)
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where the symmetric matrix ‰.t/ D Œ‰pq.t/�p;q2S is defined as:

‰pq.t/ D
(

tet�p if �p D �q

et�p �et�q

�p��q
if �p ¤ �q

(19)

We now describe a method for vectorizing the Eigen computation, which results
in improved complexity in the soft case. Let V D U�1, ı be the Hadamard
(elementwise) product, and VT

i refer to the ith column of V , and Uj the jth row
of U, then

�
i;j
k;l.t/ D ŒUŒVT

i Uj ı‰�V�kl (20)

This allows us to perform only one matrix construction for all k; l, but still requires
two matrix multiplications for each ij with an allowed transition or edge.2

We now show how to reuse the matrix-matrix products across edges and
replace them by a Hadamard product to improve efficiency further. A similar
idea was explored in [19], but their derivation is for the gradient calculation of
a CTMC, which we extend to EM for CT-HMMs. The intuition is that since
matrix multiplication is expensive, by rearranging matrix operations, we can do one
matrix multiplication, cache it, and reuse it so that we only do elementwise matrix
products for every possible transition combination i and j, rather than doing matrix
multiplications for every such combination.

Let F be a matrix given by Fkl D p.s.tv/Dk;s.tvC1/DljO;T; OQ0/
Pkl.t/

, and let Aij D VT
i Uj ı‰.

Then

jSjX

k;lD1
p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� (21)

D qij

jSjX

k;lD1
.ŒUŒVT

i Uj ı‰�V� ı F/kl (22)

D qij

jSjX

k;lD1
.ŒUAijV� ı F/kl (23)

Now note these two properties of the trace and Hadamard product, which hold for
any matrices A;B;C;D:

X

ij

.A ı B/ij D Tr.ABT/ (24)

Tr.ABCD/ D Tr.BCDA/ (25)

2Note that a version of Eq. (20) appears in [21], but that version contains a small typographic error.
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Then

jSjX

k;lD1
.ŒUAijV� ı F/kl D Tr.UAijVFT/ (26)

D Tr.AijVFTU/ (27)

D
X

kl

.Aij ı .VFTU/T/kl (28)

D
X

kl

.Aij ı .UTFVT/
„ ƒ‚ …

reuse

/kl (29)

The term UTFVT is not dependent on i; j: only Aij is, and Aij does not require
any matrix products to construct. Thus for each event or time interval, the naïve
implementation of (20) required two matrix products for each i; j that form an edge.
Through the preceding construction, we can reduce this to only two matrix products
in total. We replaced all the other matrix products with Hadamard products. This
improves the complexity by a factor of S, the number of states. The case for the
ESCE of the duration �i is similar. Letting Ai D VT

i Ui ı‰ and using the subscript v
to denote the matrix constructed for observation v, the final expectations are

EŒnijjO;T; OQ0� D qij

V�1X

vD1

X

kl

.Aij
v ı .UTFvV

T//kl (30)

EŒ�ijO;T; OQ0� D
V�1X

vD1

X

kl

.Ai
v ı .UTFvV

T//kl (31)

Note that the Hard eigen method avoids explicitly summing over all k and l states.
The key matrix manipulation then is the construction of matrices where the rows
and columns correspond to k and l, respectively. Therefore, hard eigen has the same
complexity as soft eigen when it is formulated as in Eqs. (30) and (31). Thus, soft
eigen is the preferred choice.

Computing the ESCE using the Eigen method Algorithm 2 presents pseu-
docode for our Eigen method using the Hadamard product and trace manipulations.
The algorithm does two matrix multiplications for each observation, and does only
Hadamard products for each state and edge after that.

Stability of the Eigen Method

In general, soft Eigen is the fastest soft method, but Qt can suffer from an ill-
conditioned eigendecomposition which can prevent the method from being usable.
In prior CTMC works [20, 21], Metzner et al. mention that the eigendecomposition
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Algorithm 2: Eigen Algorithm for ESCE

1: Perform eigendecomposition Q D UDV using balancing, where V D U�1

2: for v D 1 to V � 1 do
3: Compute �v D tvC1 � tv , set t D �v
4: Compute ‰ with t D �v ) O.S2/

5: Compute Fk;l D p.s.tv /Dk;s.tvC1/DljO;T; OQ0/
P.t/

6: Compute B D UT FVT

7: for each state i in S do
8: A D VT

i Ui ı ‰
9: EŒ�ijO; T;Q�C D P

jSj

k;lD1.A ı B/kl ) O.S2/
10: end for
11: for each edge .i; j/ in L do
12: A D VT

i Uj ı‰ ) O.S2/

13: EŒnijjO; T;Q�C D qij
P

jSj

k;lD1.A ı B/kl ) O.S2/
14: end for
15: end for

can potentially be ill-conditioned, but do not characterize the scope of this problem,
which we discuss now in more detail. Both the eigenvalue and eigenvector estima-
tion problems can be ill-conditioned. For the eigenvalue problem, the primary issue
is the condition number of the eigenvector matrix. This follows from the Bauer-Fike
Theorem [4], which gives a bound on the error in estimating the eigenvalues (as a
result of a perturbation�Q of the Q matrix):

min
�2�.Q/ j� � �j � jjUjj � jj�Qjj � jjU�1jj (32)

D �.U/jj�Qjj: (33)

The error between an eigenvalue� of Q C�Q and the true eigenvalue � is bounded
by the matrix norm of the perturbation, jj�Qjj, and the condition number �.U/
of the eigenvector matrix U of Q. We now discuss the impact of each of these two
terms. The perturbation of Q, jj�Qjj, is often due to rounding error and thus depends
on the norm of Q. A class of methods known as balancing or diagonal scaling [25]
can help reduce the norm of Q. In our experiments, balancing did not provide a
significant improvement in the stability of the eigendecomposition, leading us to
conclude that rounding error was not a major factor. The condition number �.U/
captures the structural properties of the eigenvector matrix. We found empirically
that certain pathological structures for the Q matrix, such as sparse triangular forms,
can produce poor condition numbers. We recommend initializing the Q matrix at the
start of EM with randomly-chosen values in order to prevent the inadvertent choice
of a poorly-conditioned U. We found that uniform initialization, in particular, was
problematic, unless random perturbations were added.

Having discussed the eigenvalue case, we now consider the case of the eigenvec-
tors. For an individual eigenvector rj, the estimation error takes the form
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�rj D
X

k¤j

lk�Qrj

�j � �k
rk C O.jj�Qjj2/; (34)

where lk are left eigenvectors, rj and rk are right eigenvectors, and �j; �k are
eigenvalues of Q (see [5] for details). Thus the stability of the eigenvector estimate
degrades when eigenvalues are closely-spaced, due to the term �j � �k in the
denominator. Note that this condition is problematic for the ESCE computation as
well, as can be seen in Eq. (19). As was the case for the eigenvalue problem, care
should be taken in initializing Q.

In summary, we found that randomly initializing the Q matrix was sufficient
to avoid problems at the start of EM. While it is difficult in general to diagnose
or eliminate the possibility of stability problems during EM iterations, we did
not encounter any significant problems in using the Eigen approach with random
initialization in our experiments. We recommend monitoring for a decrease in the
likelihood and switching to an alternate method for that iteration in the event of a
problem. One can switch back to Eigen once the likelihood is increasing again.

Expm Method

Having described an eigendecomposition-based method for computing the ESCE,
we now describe an alternative approach based on a classic method of Van Loan [30]
for computing integrals of matrix exponentials. In this approach, an auxiliary matrix

A is constructed as A D
�

Q B
0 Q

�

, where B is a matrix with identical dimensions to

Q. It is shown in [30] that

Z t

0

eQxBeQ.t�x/dt D .eAt/.1Wn/;.nC1/W.2n/ (35)

where n is the dimension of Q. That is, the integral evaluates to the upper right
quadrant of eAt. Following [12], we set B D I.i; j/, where I.i; j/ is the matrix with a
1 in the .i; j/th entry and 0 elsewhere. Thus the left hand side reduces to � i;j

k;l.t/ for all
k; l in the corresponding matrix entries, and we can leverage the substantial literature
on numerical computation of the matrix exponential. We refer to this approach as
Expm, after the popular Matlab function. This method can be seen as expressing the
integral as a solution to a differential equation. See Sect. 4 of [12] for details.

The most popular method for calculating matrix exponentials is the Padé
approximation. As was the case in the Eigen method, the two issues governing the
accuracy of the Padé approximation are the norm of Q and the eigenvalue spacing.
If the norms are large, scaling and squaring, which involves exploiting the identity
eA D .eA=m/m and using powers of two for m, can be used to reduce the norm. To
understand the role of Eigenvalue spacing, consider that the Padé approximation
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involves two series expansions Npq.Qt/ and Dpq.Qt/, which are used to construct
the matrix exponential as follows:

eQt � ŒDpq.Qt/��1Npq.Qt/ (36)

When the eigenvalue spacing increases, Dpq.Qt/ becomes closer to singular, causing
large errors [22, 23].

The maximum separation between the eigenvalues is bounded by the Gershgorin
Circle Theorem [9], which states that all of the eigenvalues of a rate matrix lie in
a circle in the complex plane centered at the largest rate, with radius equal to that
rate. That is, all eigenvalues � 2 �.Q/ lie in fz 2 C W jz � max qij � max qig. This
construction allows us to bound the maximum eigenvalue spacing of Qt (considered
as a rate matrix). Two eigenvalues cannot be further apart than twice the absolute
value of the largest magnitude diagonal element. Further, scaling and squaring helps
with this issue, as it reduces the magnitude of the largest eigenvalue. Additional
details can be found in [10, 22, 23].

Because scaling and squaring can address any stability issues associated with the
Padé method, we conclude that Expm is the most stable method for computing the
ESCE. However, we find it to be dramatically slower than Eigen (especially given
our vectorization and caching improvements), and so it should only be used if Eigen
fails.

The Expm algorithm does not have an obvious hard variant. Hard variants involve
calculating expectations conditioned on a single start state k and end-state l for the
interval between the observations. However, Expm, by virtue of using the Padé
approximation of the matrix exponential, calculates it for all k and l. The output
of the matrix exponential gives a matrix where each row corresponds to a different
k and each column a different l. Developing a hard variant would thus require a
method for returning a single element of the matrix exponential more efficiently
than the entire matrix. One direction to explore would be the use of methods to
compute the action of a matrix exponential eAtx, where x is a vector with a single 1
and 0’s elsewhere, without explicitly forming eAt (see [2]).

Computing the ESCE using the Expm method Algorithm 3 presents pseu-
docode for the Expm method for computing end-state conditioned expectations.
The algorithm exploits the fact that the A matrix does not change with time t.
Therefore, when using the scaling and squaring method [10] for computing matrix
exponentials, one can easily cache and reuse the intermediate powers of A to
efficiently compute eAt for different values of t.

Uniformization

We now discuss a third approach for computing the ESCE. This was first introduced
by Hobolth and Jensen [12] for the CTMC case, and is called uniformization (Unif ).
Unif is an efficient approximation method for computing the matrix exponential
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Algorithm 3: Expm Algorithm for ESCE
1: for v D 1 to V � 1 do
2: �v D tvC1 � tv, set t D �v
3: for each state i in S do

4: Di D .eAt/.1Wn/;.nC1/W.2n/

Pkl.t/
, where A D

�
Q I.i; i/
0 Q

�

5: EŒ�ijO; T;Q�C D P
.k;l/2L p.s.tv/ D k; s.tvC1/ D ljO; T; OQ0/.Di/k;l

6: end for
7: for each edge (i; j) in L do

8: Nij D qij.eAt/.1Wn/;.nC1/W.2n/

Pkl.t/
, where A D

�
Q I.i; j/
0 Q

�

9: EŒnijjO; T;Q� C D P
.k;l/2L p.s.tv/ D k; s.tvC1/ D ljO; T; OQ0/.Nij/k;l

10: end for
11: end for

P.t/ D eQt [12, 14]. It gives an alternative description of the CTMC process and
illustrates the relationship between CTMCs and DTMCs (see [27]). The idea is that
instead of describing a CTMC by its rate matrix, we can subdivide it into two parts:
a Poisson process fN.t/ W t � 0g with mean Oq, where N.t/ refers to the number of
events under the Poisson process at time t, and a DTMC and its associated transition
matrix R. The state of the CTMC at time t is then equal to the state after N.t/
transitions under the DTMC transition matrix R. In order to represent a CTMC this
way, the mean of the Poisson process and the DTMC transition matrix must be
selected appropriately.

Define Oq D maxi qi, and matrix R D Q
Oq C I, where I is the identity matrix. Then,

eQt D eOq.R�I/t D
1X

mD0
Rm .Oqt/m

mŠ
e�Oqt D

1X

mD0
RmPois.mI Oqt/; (37)

where Pois.mI Oqt/ is the probability of m occurrences from a Poisson distribution
with mean Oqt. The expectations can then be obtained by directly inserting the eQt

series into the integral:

� i;i
k;l D

1X

mD0

t

m C 1
Œ

mX

nD0
.Rn/ki.R

m�n/il�Pois.mI Oqt/ (38)

�
i;j
k;l D Rij

P1
mD1Œ

Pm
nD1.Rn�1/ki.Rm�n/jl�Pois.mI Oqt/

Pkl.t/
(39)

The main difficulty in using Unif in practice lies in determining the truncation point
for the infinite sum. However, for large values of Oqt, we have Pois.Oqt/ � N .Oqt; Oqt/,
where N .�; 	2/ is the normal distribution and one can then bound the truncation
error from the tail of Poisson by using the cumulative normal distribution [28].
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Algorithm 4: Unif Algorithm for ESCE

1: Set Ot D max t�; set Oq D maxiqi.
2: Let R D Q=Oq C I. Compute R;R2; : : : ;R OM , OM D �4C 6

pOqOt C .OqOt/� ) O. OMS3/
3: for v D 1 to V � 1 do
4: �v D tvC1 � tv, set t D �v

5: M D �4C 6
pOqt C .Oqt/�;

6: for each state i in S do

7: EŒ�ijs.0/ D k; s.t/ D l;Q� D
PM

mD0
t

mC1 Œ
Pm

nD0.R
n/ki.Rm�n/il �Pois.mIOqt/

Pkl.t/
) O.M2/

8: EŒ�ijO; T;Q�C D p.s.tv/ D k; s.tvC1/ D ljO; T; OQ0/EŒ�ijs.0/ D k; s.t/ D l�
9: end for

10: for each edge .i; j/ in L do

11: EŒnijjs.0/ D k; s.t/ D l;Q� D Rij
PM

mD1Œ
Pm

nD1.R
n�1/ki.Rm�n/jl �Pois.mIOqt/
Pkl.t/

) O.M2/

12: EŒnijjO; T;Q�C D p.s.tv/ D k; s.tvC1/ D ljO; T; OQ0/EŒnijjs.0/ D k; s.t/ D l�
13: end for
14: end for
15: Soft: O. OMS3 C VS3M2 C VS2LM2/; Hard: O. OMS3 C VSM2 C VLM2/

Our implementation uses a truncation point at M D �4 C 6
pOqt C .Oqt/�, which

is suggested in [28] to have error bound of 10�8.
Computing the ESCE using the Unif method Algorithm 4 presents pseu-

docode for the Unif method for computing end-state conditioned expectations. The
main benefit of Unif is that the R sequence (R;R2; : : : ;R OM) can be precomputed (line
2) and reused, so that no additional matrix multiplications are needed to obtain all of
the expectations. One main property of Unif is that it can evaluate the expectations
for only the two specified end-states, and it has O.M2/ complexity, which is not
related to S (when given the precomputed R matrix series).

One downside of Unif is that if Oqit is very large, so is the truncation point M. The
computation can then be very time consuming. We find that Unif ’s running time
performance depends on the data and the underlying Q values. The time complexity
analysis is detailed in Algorithm 4 line 15. This shows that the complexity of
soft Unif is unattractive, while hard Unif may be attractive if Eigen fails due to
instability.

Summary of Time Complexity

To compare the computational cost of different methods, we conducted an asymp-
totic complexity analysis for the five combinations of hard and soft EM with
the methods Expm, Unif, and Eigen for computing the ESCE. The complexities
are summarized in Table 1. Eigen is the most attractive of the soft methods at
O.VS3 C VLS2/, where V is the number of visits, S is the number of states, and
L is the number of edges. Its one drawback is that the eigendecomposition may
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Table 1 Time complexity comparison of all methods in evaluating all required expectations
under Soft/Hard EM

Complexity Expm Unif Eigen

Soft EM O.VS4 C VLS3/ O.MV3 C VS3M2 C VS2LM2/ O.VS3 C VLS2/

Hard EM O.VS4 C VLS3/ O.MS3 C VSM2 C VLM2/ N/A

S number of states, L number of edges, V number of visits, M the largest truncation point of the
infinite sum for Unif, set as �4C 6

pOqOt C .OqOt/�, where Oq D maxi qi, and Ot D max��v)

become ill-conditioned at any iteration. However, in our experiments, with a random
initialization, we found Eigen to be successful, and other papers have found similar
results [21], although generally with a smaller number of states. If Eigen fails, Expm
provides an alternative soft method, and Unif provides an alternative hard method.
Hard Unif is often faster than Expm in practice, so we recommend running that first
to get a sense of how long Expm will take, and if it is feasible, run Expm afterwards.

The time complexity comparison between Expm and Unif depends on the relative
size of the state space S and M, where M D �4 C 6

p
maxi qit C .maxi qit/� is the

largest truncation point of the infinite sum used in Unif (see Table 1). It follows
that Unif is more sensitive to maxi qit than Expm (quadratic vs. log dependency).
This is because when Expm is evaluated using the scaling and squaring method
[10], the number of matrix multiplications depends on the number of applications
of matrix scaling and squaring, which is �log2.jjQtjj1=
13/�, where 
13 D 5:4 (the
Pade approximant with degree 13). If scaling of Q is required [10], then we have
log2.jjQtjj1/ � log2.S maxi qit/. Therefore, the running time of Unif will vary with
max qit more dramatically than Expm.

When selecting an EM variant, there are three considerations: stability, time, and
accuracy. Overall, soft Eigen offers the best tradeoff between speed and accuracy.
However, if it is not stable, then soft Expm will generally have higher accuracy than
hard Unif, but may be less efficient.

In some applications, event times are distributed irregularly over a discrete
timescale. For example, hospital visits may be identified by their date but not by
their time. In that case, the interval between two events will be a discrete number.
In such cases, events with the same interval, e.g. with 5 days between visits, can be
pooled and the ESCE can be computed once for all such events. See [18] for details,
including the supplementary material for complexity analysis.

Experimental Results

We evaluated our EM algorithms in simulation (section “Simulation Performance on
a 5-state Complete Digraph”) and on two real-world datasets (section “Application
of CT-HMM to Analyzing Disease Progression”): a glaucoma dataset using a model
with 105 states and an Alzheimer’s Disease dataset with 277 states. This is a
significant advance in the ability to work with large models, as previous CT-HMM
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works [13, 16, 31] employed fewer than 100 states. We initialized the rate matrix
uniformly with a small random perturbation added to each element. The random
perturbation avoids a degenerate configuration for the Eigen method, while uniform
initialization makes the runtimes comparable across methods. We used balancing
for the eigendecomposition. Our timing experiments were run on an early 2015
MacBook Pro Retina with a 3.1 GHz Intel Core i7 processor and 16 GB of memory.

Simulation Performance on a 5-state Complete Digraph

We evaluated the accuracy of all methods on a 5-state complete digraph with
synthetic data generated under different noise levels. Each qi was randomly drawn
from Œ1; 5� and then qij was drawn from Œ0; 1� and renormalized such that

P
j¤i qij D

qi. The state chains were generated from Q, such that each chain had a total duration
around T D 100

mini qi
, where 1

mini qi
is the largest mean holding time. The data emission

model for state i was set as N .i; 	2/, where 	 varied under different noise level
settings.

The observations were then sampled from the state chains with rate 0:5
maxi qi

, where
1

maxi qi
is the smallest mean holding time, which was ensured to be dense enough

to make the chain identifiable. A total of 105 observations were sampled. The
convergence threshold for EM was a change in the relative data likelihood of �10�8.
The average 2-norm relative error jjOq�qjj

jjqjj was used as the performance metric, where
Oq is a vector of the learned qij parameters, and q is the ground truth.

The simulation results from five random runs are given in Table 2. Expm, Unif,
and Eigen produced nearly identical results, and so they are combined in the
table, which focuses on the difference between hard and soft variants. We found
Eigen to be stable across all runs. All soft methods achieved significantly higher
accuracy than hard methods, especially for higher observation noise levels. This
can be attributed to the maintenance of the full hidden state distribution, leading to
improved robustness to noise.

Application of CT-HMM to Analyzing Disease Progression

In the next set of experiments, we used the CT-HMM to analyze and visualize dis-
ease progression patterns from two real-world datasets of glaucoma and Alzheimer’s

Table 2 The average 2-norm relative error from five random runs on a 5-state complete digraph
under varying measurement noise levels

Error 	 D 1=4 	 D 3=8 	 D 1=2 	 D 1 	 D 2

Soft 0:026˙ 0:008 0:032˙ 0:008 0:042˙ 0:012 0:199˙ 0:084 0:510˙ 0:104

Hard 0:031˙ 0:009 0:197˙ 0:062 0:476˙ 0:100 0:857˙ 0:080 0:925˙ 0:030
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Fig. 4 Visualization of disease progression from two datasets: (a) Nodes represent states of
glaucoma, with the node color encoding the average sojourn time (red to green: 0–5 years and
above). The blue links between nodes indicate the most probable (i.e. strongest) transitions between
adjacent states, selected from among the three allowed transitions (i.e., down, to the right, and
diagonally). The line width and the node size reflect the expected count of patients passing through
a transition or state. (b) The representation for AD is similar to (a) with the strongest transition
from each state being coded as follows: Aˇ direction (blue), hippo (green), cog (red), Aˇ+hippo
(cyan), Aˇ+cog (magenta), hippo+cog (yellow), Aˇ+hippo+ cog(black). The node color represents
the average sojourn time (red to green: 0–3 years and above). http://www.cbs.gatech.edu/CT-HMM

Disease (AD). Both are examples of degenerative disorders where the time course
of the disease plays an important role in its etiology and treatment. We demonstrate
that CT-HMM can yield insight into disease progression, and we compare the timing
results for learning across our family of methods.

We begin by describing a 2D CT-HMM for glaucoma progression. Glaucoma is
a leading cause of blindness and visual morbidity worldwide [15]. This disease is
characterized by a slowly progressing optic neuropathy with associated irreversible
structural and functional damage. We use a 2D-grid state space model defined by
successive value bands of the two main glaucoma markers, Visual Field Index
(VFI) (functional marker) and average RNFL (Retinal Nerve Fiber Layer) thickness
(structural marker) with forwarding edges (see Fig. 4a).

Our glaucoma dataset contains 101 glaucomatous eyes from 74 patients followed
for an average of 11:7 ˙ 4:5 years, and each eye has at least five visits (average
7:1˙ 3:1 visits). There were 63 distinct time intervals. The state space is created so
that most states have at least five raw measurements mapped to them. All states that
are in a direct path between two successive measurements are instantiated, resulting
in 105 states.

In Fig. 4a, we visualize the model trained using the entire glaucoma dataset.
Several dominant paths can be identified: there is an early stage containing RNFL
thinning with intact vision (blue vertical path in the first column). At RNFL range
Œ80; 85�, the transition trend reverses and VFI changes become more evident (blue
horizontal paths). This L shape in the disease progression supports the finding
in [32] that RNFL thickness of around 77 microns is a tipping point at which

http://www.cbs.gatech.edu/CT-HMM


382 Y.-Y. Liu et al.

functional deterioration becomes clinically observable with structural deterioration.
Our 2D CT-HMM model reveals the non-linear relationship between structural and
functional degeneration, yielding insights into the progression process.

We now demonstrate the use of CT-HMM to visualize the temporal interaction
of disease markers of Alzheimer’s Disease (AD). AD is an irreversible neuro-
degenerative disease that results in a loss of mental function due to the degeneration
of brain tissues. An estimated 5.3 million Americans have AD, and there is no
known method for the prevention or cure of the condition [29]. It could be beneficial
to visualize the relationship between clinical, imaging, and biochemical markers as
the pathology evolves, in order to better understand AD progression and develop
treatments.

In this experiment, we analyzed the temporal interaction among the three kinds
of markers: amyloid beta (Aˇ) level in cerebral spinal fluid (CSF) (a bio-chemical
marker), hippocampus volume (a structural marker), and ADAS cognition score (a
functional marker). We obtained the ADNI (The Alzheimer’s Disease Neuroimaging
Initiative) dataset from [29].3 Our sample included patients with mild cognitive
impairment (MCI) and AD who had at least two visits with all three markers
present, yielding 206 subjects with an average of 2:38 ˙ 0:66 visits traced in
1:56 ˙ 0:86 years. The dataset contained three distinct time intervals at 1 month
resolution. A 3D gridded state space consisting of 277 states with forwarding links
was defined such that for each marker, there were 14 bands that spanned its value
range. The procedure for constructing the state space and the definition of the data
emission model is the same as in the glaucoma experiment. Following CT-HMM
learning, the resulting visualization of Alzheimer’s disease in Fig. 4b supports recent
findings that a decrease in the A level of CSF (blue lines) is an early marker
that precedes detectable hippocampus atrophy (green lines) in cognition-normal
elderly [8]. The CT-HMM disease model and its associated visualization can be used
as an exploratory tool to gain insights into health dynamics and generate hypotheses
for further investigation by biomedical researchers.

Figure 5 gives the average runtime comparison for a single EM iteration between
soft Expm, soft Eigen, and hard Unif for both datasets. Soft Eigen with our
improvements is 26 times faster than soft Expm for the glaucoma experiment, and
35 times faster for the AD experiment. Hard Unif is slightly slower than soft Eigen.
We did not include soft Unif due to its poor complexity or hard Eigen due to its
minimal computational benefit in comparison to soft Eigen.

3Data were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see http://www.adni-info.org.

adni.loni.usc.edu
http://www.adni-info.org
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Fig. 5 Time comparison for the average time per iteration between soft Expm, soft Eigen and hard
Unif for both experiments. Soft Eigen is the fastest method, over an order of magnitude faster than
soft Expm in both cases. Thus, it should be used unless the eigendecomposition fails, in which case
there is a tradeoff between soft Expm for accuracy and hard Unif for speed

Conclusion

This article introduces novel EM algorithms for CT-HMM learning which leverage
recent approaches [12] for evaluating the end-state conditioned expectations in
CTMC models. We improve upon the efficiency of the soft Eigen method, demon-
strating in our experiments a 26–35 times speedup over Expm, the next fastest
soft method. To our knowledge, we are the first to develop and test the Expm
and Unif methods for CT-HMM learning. We present time complexity analysis for
all methods and provide experimental comparisons under both soft and hard EM
frameworks. We conclude that soft Eigen is the most attractive method overall,
based on its speed and its accuracy as a soft method, unless it suffers from an
unstable eigendecomposition. We did not encounter significant stability issues in our
experiments. We evaluated our EM algorithms on two disease progression datasets
for glaucoma and Alzheimer’s Disease, and demonstrated that the CT-HMM can
provide a novel tool for visualizing the progression of these diseases. The software
implementation of our methods is available from our project website.4

4http://www.cbs.gatech.edu/CT-HMM

http://www.cbs.gatech.edu/CT-HMM
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In future work, we plan to explore the use of CT-HMMs in modeling event data
in a mobile health context, including the analysis of EMA data and moments of
high stress or craving identified from mobile sensor data. Other future directions
include the combination of event data with regularly-sampled data in a joint model,
the incorporation of covariates to model heterogeneous populations, and explicitly
incorporating event times into the model. In addition, more work could be done
to improve the computational efficiency of the Expm and Unif methods. As an
example, [1] describes potentially more efficient ways to compute Expm by noting
that the upper right corner of the matrix solution is a Frechét derivative, which has
its own Padé approximation. It appears that the Hadamard and trace manipulations
we introduced could be applied to this approach as well. Scaling and squaring would
cancel much of the benefit, so it would have to be replaced by balancing, which has
the same goal of reducing the matrix norm. Additional improvements in efficiency
would support the development of large-scale state models.
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Appendix: Derivation of Vectorized Eigen

In [20, 21], it is stated without proof that the naïve Eigen is equivalent to Vectorized
Eigen. Here we present the derivation. Let
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nX
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UjqU�1
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where the symmetric matrix ‰.t/ D Œ‰pq.t/�p;q2S is defined as:
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Letting V D U�1, this is equivalent to
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To see why, first, note that for the outer product,
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