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Abstract

We consider the problem of training a binary sequential classifier un-
der an error rate constraint. It is well known that for known densities,
accumulating the likelihood ratio statistics is time optimal under a fixed
error rate constraint. For the case of unknown densities, we formulate the
learning for sequential detection problem as a constrained density ratio
estimation problem. Specifically, we show that the problem can be posed
as a convex optimization problem using a Reproducing Kernel Hilbert
Space representation for the log-density ratio function. The proposed bi-
nary sequential classifier is tested on synthetic data set and UC Irvine
human activity recognition data set, together with previous approaches
for density ratio estimation. Our empirical results show that the classifier
trained through the proposed technique achieves smaller average sampling
cost than previous classifiers proposed in the literature for the same error
rate.

1 Introduction

Sequential decision strategies outperform their fixed sample size counterparts
in achieving same decision risk using less number of samples on the average.
Initially, developed by Wald [1] to reduce the number of inspections in industrial
quality control, it becomes widely used in clinical studies to reduce the average
number of patients that are undergoing potentially risky treatments. Even
when the cost of samples are not a major concern, sequential techniques can be
used to reduce the computational cost of obtaining relevant information from
a data sample. Thus sequential test is still a method of great potential in any
time sensitive scenario. For example, in many computer vision problems, more
sophisticated feature is usually expensive and slow to obtain even though they
provide higher accuracy. Therefore cascading classifier such as Viola-Jones[2] is
widely used due to their sequential nature.

For the case of known class conditional densities accumulating likelihood
statistics and comparing with fixed thresholds minimizes the average stopping
time under fixed error constraints. In this paper, we consider the case where
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the class conditional densities generating the data is unknown and sequential
decision rule has to be learned directly from labeled data samples. While there
exists plethora of supervised learning algorithms to learn fixed sample test rules
using parametric and non-parametric forms, there exist relatively few algorithms
designed to learn to perform sequential classification. Unlike the single sample
classification problems where only the decision boundary is critical, sequential
decision rules require a mapping from sample space to a state space for ag-
gregation of evidence and making stopping rules. To be concrete we focus on
the specific problem of learning a binary sequential classifier. The class condi-
tional distribution is assumed to be unknown, but identical and conditionally
independent over time resulting in a stationary decision/aggregation rule. For
temporal aggregation of information across samples constructing an estimate
of the likelihood or posterior probability emerges as an obvious framework for
constructing sequential rule.

The information summarizing problem itself has been discussed in [3] and the
reference therein without considering sequential testing scenario. In the same
framework of this paper, Sochman and Matas [4] constructed a likelihood ratio
function estimator using Adaboost [5, 6] to perform binary sequential classifi-
cation based on accumulation and thresholding of the likelihood ratio estimate,
resulting in an algorithm called Wald-Boost algorithm. Similarly, other meth-
ods of constructing density ratio estimates based on maximizing information
theoretic functionals [7, 8] can be employed to perform sequential decisions.

However, the optimization criteria used by these methods for constructing
likelihood ratio functions estimates are not directly related to the performance
in sequential detection. We note that errors in the likelihood estimate effect
the average stopping time and error probabilities in a non-trivial way due to
accumulation of errors across samples. Kuh et al. [9, 10] used reinforcement
learning methods to propagate errors in terminal decisions to adjust weights
in a parametric likelihood ratio function estimate to learn binary sequential
classifiers. However, again stopping time is not considered as a direct opti-
mization criteria. In this paper we derive a variational bound on the sampling
cost of SPRT and associated non-parametric log-density ratio estimate which
minimizes this bound. Our empirical results show that the sequntial classifier
trained through the proposed technique achieves smaller average sampling cost
than learned sequential tests employing likelihood function estimates proposed
in the literature.

2 Problem Statement

In this paper, the problem of learning a binary sequential detector from training

data is studied. The training data consists of M samples
{
x

(0)
1 ,x

(0)
2 , · · · ,x(0)

M

}
from class 0, and N samples

{
x

(1)
1 ,x

(1)
2 , · · · ,x(1)

N

}
from class 1, sampled i.i.d.

with unknown densities p0(x) and p1(x) respectively. Each sample x
(c)
n ∈ Rd

is a d dimensional feature vector from class c. The learning problem is to
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design a sequential decision making mechanism which consists of an information
aggregating rule, a stopping criterion and a decision rule to make a terminal
decisions between the two hypotheses {H0,H1} regarding the density used to
generate series of samples in a test set. Here, the information aggregating
rule is assumed to be stationary and only use a one dimensional state variable
summarizing information received up to current sample regarding prevailing
class label. Recall that in the classic setting for sequential detection with known
class conditional density, Sequential Probability Ratio Test (SPRT) minimizes
stopping time for both classes under constraints on miss detection and false
alarm probability [1]. SPRT compares the cumulative the log-likelihood ratio
with fixed thresholds to choose between terminal decision or continue to sample:

Stop and Declare H0 if:∑
i

log
p1(xi)

p0(xi)
≤ a(PF,PM)

Stop and Declare H1 if:∑
i

log
p1(xi)

p0(xi)
≥ b(PF,PM)

continue sampling if:

a(PF,PM) <
∑
i

log
p1(xi)

p0(xi)
< b(PF,PM)

where a and b are respectively the lower and upper terminating boundaries.
Under zero-overshoot assumption on the accumulated likelihood at stopping
time , the expected sampling cost for standard binary SPRT is given in [11] as:

N0 =
1

D01
[PF log

PF

1− PM
+ (1− PF ) log

1− PF

PF
]

N1 =
1

D10
[PM log

PM

1− PF
+ (1− PM) log

1− PM

PF
]

(1)

Inspired by the structure of the SPRT, an appealing choice for learning a
binary sequential detector is to construct a function estimate for the likelihood
ratio function from training samples and design termination and decision rule as
threshold comparisons as in SPRT. Directly estimating class conditional density
function independently and computing the ratio results in poor performance [8]
since fit errors in different regions of the sample space is emphasized when di-
viding the two densities. A number of techniques have been suggested in the
literature for directly estimating density ratio functions which can be charac-
terized into three classes: parametric approaches [12] that assume a parametric
form and use regression methods to fit through maximization of binomial likeli-
hood on the training data, boosting based methods [4] that rely on asymptotic
properties of weighted sum of weak learners and non-parametric techniques[7, 8]
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that construct likelihood ratio function estimates through maximization of in-
formation theoretic divergence metrics on the training data.

An estimate of log-posterior ratio can be converted to density ratio estimate
through canceling the term produced by the prior ratio. For example, a com-
mon parametric form for log-posterior ratio is the additive functions of training
samples [12]:

log
p(H1|x)

p(H0|x)
=
∑
m

fm(x; γm) = F (x; γ) (2)

then the estimate for the density ratio can be formed as:

r̂(x) = eF (x;γ) p(H0)

p(H1)
(3)

the parameter vectors {γm}m are typically through maximization of the bi-
nomial log-likelihood function. When the model was specified correctly, the
solution has the asymptotic optimality of a maximum likelihood estimator. In-
terestingly, as shown by Friedman et al. [13] boosting approaches [6, 5] that
combine binary decision of weak classifiers to train classifiers with improved
performance can be analyzed under the same framework of fitting an additive
model through maximization of likelihood. Specifically consider weighted sum
of binary decisions from weak classifier outputs {fi(x)} with associated weights
{ci}:

FA(x) =
∑
i

cifi(x) (4)

The function FA(x) represents the aggregate decision of the ensemble of weak
classifier. The design process is to iteratively add new classifier to the exist-
ing ones while optimizing the weights associated with them. In boosting, each
new weak classifier is tasked to minimized a weighted classification error for
the training set, in which higher weights are assigned to incorrectly classified
samples using current classifier. Friedman et al. [13] have shown that the itera-
tive weighted minimization procedure is equivalent to minimizing the expected
exponential error E(e−yF (x)), which is a second order approximation to the bi-
nomial log-likelihood function. And they pointed out that the density ratio can
be retrieved from the final classifier through:

r̂(x) = e2FA(x) p(H0)

p(H1)
(5)

The boosting approach is fast with good empirical performance and is resis-
tant to over-fitting and provides a fast approach for constructing density ratio
estimates.

In principle all these methods provide density ratio function estimates that
can be used to form a binary sequential classifier incorporating into the SPRT
structure. However, the optimization criteria employed in these techniques is
decoupled from the performance of these function estimates in a sequential
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decision task. This mismatch results in sub-optimal performance as illustrated
by our empirical experiments in Section 4.

In a novel direction, Nguyen et al. [7] derived variational characterizations of
f -divergences which enabled estimation of divergence functionals and likelihood
ratios through convex risk minimization. Following this work, we derive a vari-
ational bound on the expected sampling cost of SPRT (with known densities)
and obtain an associated density ratio estimate r̂(x). Next, using a Reproduc-
ing Kernel Hilbert Space representation for the log-density ratio function we
obtain a convex optimization approach for fitting density ratio estimate r̂(x) to
training data dubbed as Wald Kernel Density Ratio Fit (WKDRF).

3 Wald Kernel Density Ratio Fit (WKDRF)

In this section, we formulate a new algorithm for learning log-density ratio
function estimates that are tailored for performing sequential binary detection
in the SPRT decision structure of accumulation and thresholding. Our goal is
to form a log-density ratio estimate such that the resulting sequential decision
structure minimizes the average stopping time (or equivalently expected number
of samples ) for a desired level of probability of error. Towards that end, we
first extend known results on SPRT error probabilities [11] to the case of learned
sequential test based on a given density ratio estimate r̂(x).

Theorem 1. In a learned SPRT, if the estimated density ratio function r̂(·) is
not constant and normalized as:

E[r̂|H0] = 1 and E[r̂−1|H1] = 1 (6)

then for fixed lower and upper thresholds a and b on log-likelihood ratio, proba-
bility of false alarm and miss detection of terminal decisions is given by :

PF =
1− ea

eb − ea
and PM =

ea(eb − 1)

eb − ea
. (7)

We note that learned SPRT performance with normalized density ratio es-
timates matches SPRT performance, albeit with a potentially longer average
stopping time. To prove Theorem 1, the following Lemma is required.

Lemma 1. Let ẑi = log r̂(xi), Λ̂n =
∑n
k=1 ẑk and Ĝ(u) = E[euẑ], under both

hypotheses the following process is a Martingale:

M̂n =
euΛ̂n

Ĝ(u)n
(8)
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Proof. First of all, it is easy to check M̂0 = 1. Next, one can verify that:

E[M̂n+1|M̂k, 0 ≤ k ≤ n] = E[
euΛ̂n+1

Ĝ(u)n+1
|M̂k, 0 ≤ k ≤ n]

= E[
euẑn+1

Ĝ(u)
· M̂n|M̂k, 0 ≤ k ≤ n]

= M̂n ·
E[euẑn+1 ]

Ĝ(u)

= M̂n

And since M̂n are all positive valued, we have:

E[|M̂n|] = E[M̂n] = E[M̂0] = 1

Thus we proved the process M̂n satisfies the two properties to be a Martingale.

Next we prove Theorem 1.

Proof. Define Ĝ0(u) = E[euẑ|H0] and Ĝ1(u) = E[euẑ|H1]. The special case of
r̂ = 1 satisfies both constraints, but when r̂ = 1 the test never stops. Other
than that, there is no constantly valued r̂(·) satisfies both constraints. When
r̂ is not constantly 1, the test will stop at finite time. Let N be the random
stopping time, then we have the two types of error when the test stops:

P̂F = Pr{Λ̂N ≥ b|H0} and P̂M = Pr{Λ̂N ≤ a|H1}

For the special case of u = 0, u = −1 and u = 1:

Ĝ0(0) = 1, Ĝ1(0) = 1

and

Ĝ0(1) =

∫
r̂(x)p0(x)dx, Ĝ1(−1) =

∫
r̂(x)−1p1(x)dx

Now one can evaluate the expected value of the Martingale M̂N at the stopping
time N under H0 with u = 1, which gives:

E[
eΛ̂N

Ĝ0(1)N
|H0] = 1

when E[r̂|H0]=1⇔ E[eΛ̂N |H0] = 1

applying zero-overshooting assumption⇔ P̂FB + (1− P̂F)A = 1

⇔ P̂F =
1−A
B −A
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where A = ea and B = eb. Similarly, by constraining E[r̂−1|H1] = 1, one can
get:

P̂M =
A(B − 1)

B −A

Next, following the approach used in [7] to develop estimate of divergence
functionals and likelihood ratio functionals, we derive a variational upper bound
on the sampling cost of SPRT, which reveals a density ratio function estimate
linked to the sequential test performance.

Theorem 2. The average stopping time for SPRT can be upper bounded by the
solution of the following problem:

min
r̂

ω0∫
p0 log(r̂)

− ω1∫
p1 log(r̂)

s.t.

∫
r̂p0 = 1,

∫
r̂−1p1 = 1

(9)

Proof. Recall that the expected number of sample in the standard SPRT is
given in (1). Since the terms inside the bracket are constant after fixing the
error rate, we define the following two constants for simplicity:

ω0 = π0[PF log
PF

1− PM
+ (1− PF ) log

1− PF

PF
]

and

ω1 = π1[PM log
PM

1− PF
+ (1− PM) log

1− PM

PF
]

where π0 and π1 are the prior probability of H0 and π1. The standard SPRT
sampling cost then can be written as:

C =
ω0

D01
+

ω1

D10

=
ω0∫
p0 log r

+
ω1∫

p1 log r−1

(10)

Applying similar method as [7], the cost objective can be upper bounded using
the convex conjugate formula for − log(·) function which is:

− log(x)⇔ −(1 + log(−x∗)) (11)

as:

C =
ω0∫
p0 log r

+
ω1∫

p1 log r−1
(12)

≤ ω0

supg
∫
p0(g · r + log(−g) + 1)

+
ω1

supf
∫
p1(f · r−1 + log(−f) + 1)

(13)

≤ inf
f

ω0∫
1
f p1 − p0 log(−f) + p0

+
ω1∫

fp0 + p1 log(−f) + p1
(14)
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Using the two constraints (6) and defining the density ratio estimate as r̂ = 1
−f

we obtain the variational bound given in (9).

3.1 Kernel Based Density Ratio Fitting

If we adopt a Reproducing Kernel Hilbert Space representation for the log-
density ratio function and replace the class conditional densities with empirical
distributions defined by the training data, the variational problem given in (9)
is equivalent to:

min
r̂

ω0∑M
j=1 log(r̂(x

(0)
j ))

− ω1∑N
i=1 log(r̂(x

(1)
i ))

s.t.

M∑
j=1

r̂(x
(0)
j ) = 1,

N∑
i=1

r̂−1(x
(1)
i ) = 1

(15)

Next, we impose the Reproducing Kernel Hilbert Space(RKHS) structure to the
log-density ratio function. Any function in RKHS can be written as an inner
product form of:

f(·) =< ω,Φ(·,u) >=

C∑
c=1

αcK(·,uc)

where K(·, ·) is the kernel function. In this paper, we choose Gaussian kernel
with randomly sampled centers as suggested in [8]. Since the objective function
is a pointwise cost whose minimizer is not unique and could even be infinite di-
mensional, we add a regularization term to penalize the l2 norm of the estimated
log-likelihood ratio function which gives:

min
α

ω0∑M
j=1

∑C
c=1 αc exp(−‖x

(0)
j −xc‖2
σ2 )

− ω1∑N
i=1

∑C
c=1 αc exp(−‖x

(1)
i −xc‖2
σ2 )

+
λ

2
αTKα

s.t.

M∑
j=1

e
∑C
c=1 αc exp(−

‖x(0)
j
−xc‖2

σ2
) = 1,

N∑
i=1

e−
∑C
c=1 αc exp(−

‖x(1)
i
−xc‖2

σ2
) = 1

(16)

The equality constraints can be relaxed to inequality constraints to obtain a
convex optimization problem:

min
α

ω0∑M
j=1

∑C
c=1 αc exp(−‖x

(0)
j −xc‖2
σ2 )

− ω1∑N
i=1

∑C
c=1 αc exp(−‖x

(1)
i −xc‖2
σ2 )

+
λ

2
αTKα

s.t.

M∑
j=1

e
∑C
c=1 αc exp(−

‖x(0)
j
−xc‖2

σ2
) ≤ 1,

N∑
i=1

e−
∑C
c=1 αc exp(−

‖x(1)
i
−xc‖2

σ2
) ≤ 1

(17)
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where K is the kernel matrix with K(i, j) = exp(−‖xci−xcj ‖
2

σ2 ). One may observe
that since the two denominator terms are both linear functions of α, convexity
preserving rule for composition of functions guarantees that the objective being
convex in α as long as α is properly initialized. Specifically, 1

· is a convex non-
increasing function for positive valued denominator and the linear function is
concave, resulting in the composite function being convex when the denominator
is positive. In addition, we need to guarantee that the first term in (17) has a
positive denominator while the second term has a negative denominator. This
can be easily done by performing a proper initialization. Since those exponential
function coefficients can be viewed as the normal of the hyperplane in terms of
α, in (17) we need to choose the α vector such that it lies in the region that gives
proper inner product value for both term. A natural yet simple choice of initial
α could be the normalized equipartitioning vector of the two normal vectors.
The resulting parameter vector α defines the estimator of the log-density ratio
function, which summarizes each observation into a log-likelihood to be used
in a learned SPRT. The testing phase is exactly the same as standard SPRT
with known density, except that in the learned test the estimated density ratio
function is used as the information aggregation mapping. The resulting learned
SPRT automatically satisfies the error constraints with appropriately chosen
thresholds as shown in Theorem 1.

4 Experimental Results

We compare the performance of the learned SPRT using WKDR fitting with
the performance of Wald-Boost [4], which is based on AdaBoost training of the
density ratio function, and the learned SPRT employing KL-divergence density
ratio fit [7] which fits the density ratio by maximizing the lower bound to the
one sided KL-divergence. The kernel width in our method and KL-divergence
fitting method is chosen using cross validation.

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

(a) Training data

3 4 5 6 7 8 9 10 11 12 13
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time(sample)

E
rr

or
 r

at
e

 

 
Wald−Boost Fitting
WKDRF
SPRT using True Density
KL−Divergence Fitting

(b) Performance curve

Figure 1: Synthetic example

We first tested the algorithm in a synthetic data set. In this example, H0
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samples are single component Gaussian random vector N (

[
1
1

]
,

[
0.5 0
0 0.5

]
) and

H1 samples are Gaussian mixture as 1
2N (

[
0
0

]
,

[
0.5 0
0 0.5

]
)+ 1

2N (

[
1.5
1.5

]
,

[
0.5 0
0 0.5

]
).

We used 2,000 samples from each class in training and sequentially draw samples
in testing. For simplicity, we choose the termination boundary to be symmetric
and the prior probability of the two hypotheses being equal. We use 25 randomly
picked samples as kernel centers in both WKDRF and KL-Divergence Fitting
methods. We use 200 stumps as weak classifier in Wald-Boost. In testing phase,
the same sample is feed into all methods until they terminate, and the termina-
tion time is recorded. A scatter plot for the dataset is given in Figure 1a, and
the empirical performance result is plotted in Figure 1b. The proposed method
outperforms both the KL-divergence based method and outperform Wald-Boost
in this example achieving lower sampling cost for a given probability of error.

The second example we present is human activity recognition. The data set
we used is the smartphone recorded human activity data from the UC Irvine
Machine Learning Repository website [14]. Two feature sets are used in our
evaluation: Features 1-3 which is the mean accelerometer value and Features
294-296 which is the mean frequency domain accelerometer value. We consider
two classification tasks: 1) Classification task to determine whether a subject
is moving or static, 2) Classification of subject that are moving on staircase
to walking upstairs or downstairs. The size of training data is 3285 and 4067
respectively for moving v.s. static test, and 1073 and 986 for up v.s. down test.
We picked 50 randomly chosen samples as kernel centers. Also the number
of stumps used in Wald-Boost is 200. The data set is plotted in Figure 2a-
d, and the results are in Figure 2e-h. Again in both classification tasks, our
method outperforms the other methods. Notably, WaldBoost outperforms KL
divergence based method in this learning task.

We note that, if the true density ratio and its inverse are indeed in the RKHS
function class, then KL-divergence density ratio fitting would result identical
log-density ratio estimates as our proposed method. Under model mismatch for
the log-density ratio function, our optimization criteria balances the two errors
in the SPRT expression to choose the density estimate, arguably resulting in
better performance in sequential tasks.

5 Conclusion

In this work, we proposed a method for learning binary sequential tests based on
a optimizing a variational bound on sampling cost of SPRT. The proposed al-
gorithm results in an convex program that can be solved efficiently. Experimen-
tal results show that the proposed algorithm outperforms previously proposed
techniques achieving smaller stopping time for a given error rate. A potential
direction for future work is characterization of the distance metric between the
true and estimated log-density ratio metrics when the optimization criteria in 9
is utilized and use this metric to study convergence of the proposed method as
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the number of training samples increase.
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Figure 2: Human activity classification
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