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Abstract

The use and development of mobile interventions are experiencing rapid growth. In “just-in-time” 

mobile interventions, treatments are provided via a mobile device and they are intended to help an 

individual make healthy decisions “in the moment,” and thus have a proximal, near future impact. 

Currently the development of mobile interventions is proceeding at a much faster pace than that of 

associated data science methods. A first step toward developing data-based methods is to provide 

an experimental design for testing the proximal effects of these just-in-time treatments. In this 

paper, we propose a “micro-randomized” trial design for this purpose. In a micro-randomized trial, 

treatments are sequentially randomized throughout the conduct of the study, with the result that 

each participant may be randomized at the 100s or 1000s of occasions at which a treatment might 

be provided. Further, we develop a test statistic for assessing the proximal effect of a treatment as 

well as an associated sample size calculator. We conduct simulation evaluations of the sample size 

calculator in various settings. Rules of thumb that might be used in designing a micro-randomized 

trial are discussed. This work is motivated by our collaboration on the HeartSteps mobile 

application designed to increase physical activity.
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1. Introduction

The use and development of mobile interventions are experiencing rapid growth. Mobile 

interventions are used across the health fields and include treatments to improve HIV 

medication adherence [1, 2], to increase activity [3], supplement counseling/

pharmacotherapy in treatment for substance use [4, 5], reinforce abstinence in addictions [6, 

7] and to support recovery from alcohol dependence [8, 9]. Mobile interventions for 

adherence to anti-retroviral therapy and smoking cessation have shown sufficient 

effectiveness and replicability in trials and have been recommended for inclusion in health 

services [10].
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However, as Nilsen et al. [11] state, “In fact, the development of mHealth technologies is 

currently progressing at a much faster pace than the science to evaluate their validity and 

efficacy, introducing the risk that ineffective or even potentially harmful or iatrogenic 

applications will be implemented.” Indeed reviews, while reporting preliminary evidence of 

effectiveness, call for more programmatic, data-based approaches to constructing mobile 

interventions [10, 12]. In particular, these reviews call for research that focuses on data-

informed development of these complex multi-component interventions prior to their 

evaluation in standard randomized controlled trials. But methods for using data to inform the 

design and evaluation of adaptive mobile interventions have lagged behind the use and 

deployment of these interventions [11, 13, 14].

Many mobile interventions are designed to be “just-in-time” interventions, meaning that 

they intend to provide treatments that help an individual make healthy decisions in the 

moment, such as engaging in a desirable behavior (e.g., taking a medication on time) or 

effectively coping with a stressful situation. As such, mobile interventions are often intended 

to have proximal, near-term effects. A first approach toward developing data-based methods 

for evaluation of mobile health interventions is to provide an experimental design for testing 

the proximal effects of the treatments. This paper proposes a micro-randomized trial design 

for this purpose. In a micro-randomized trial, treatments are sequentially randomized 

throughout the conduct of the study, with the result that each participant may be randomized 

at the hundreds or thousands of occasions at which a treatment might be provided. This 

repeated randomization of treatments under investigation enables causal modeling of each 

treatment’s time-varying proximal effect as well as modeling of time-varying effect 

moderation. Thus, the micro-randomized trial can be seen as a first experimental step in the 

development of effective mobile interventions that are composed of sequences of treatments. 

We propose to size the trial to detect the proximal main effect of the treatments. This is akin 

to the use of factorial designs for use in constructing multi-component interventions. In these 

factorial designs [15, 16], a first analysis often involves testing if the main effect of each 

treatment is equal to 0.

This work is motivated by our collaboration on the HeartSteps mobile application for 

increasing physical activity, which we will use to illustrate our discussion. One of the 

treatments in HeartSteps is suggestions for physical activity which are tailored to the 

person’s current context. HeartSteps can deliver these suggestions at any of the five time 

intervals during the day, which correspond roughly to morning commute, mid-day, mid-

afternoon, evening commute, and post-dinner times. When a suggestion is delivered, the 

user’s phone plays a notification sound, vibrates and lights up, and the suggestion is 

displayed on the lock screen of the phone. These suggestions encourage activity in the 

current context and are intended to have an effect (getting a person to walk) within the next 

hour.

In the following section, we introduce the micro-randomized trial design. In section 3 we 

precisely define the proximal main effect of a treatment, using the language of potential 

outcomes. We develop the test statistic for assessing the proximal effect of a treatment as 

well as an associated sample size calculator in section 4 and 5. Next we provide simulation 

evaluation of the sample size calculator. We end, in Section 7, with a discussion.
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2. Micro-Randomized Trial

In general an individual’s longitudinal data, recorded via mobile devices that sense and 

provide treatments, can be written as

where, t indexes decision times, S0 is a vector of baseline information (gender, ethnicity, 

etc.) and St (t ≥ 1) is information collected between time t −1 and t (e.g. summary measures 

of recent activity levels, engagement, and burden; day of week; weather; busyness indicated 

by smart phone calendar, etc.). The treatment at time t is denoted by At; throughout this 

paper we consider binary options for the treatments (e.g., the treatment is on or off). The 

proximal response, denoted by Yt+1, is a known function of {St, At, St+1}. Here we assume 

that the longitudinal data are independent and identically distributed across N individuals. 

Note that this assumption would be violated, if for example, some of the treatments are used 

to enhance social support between individuals in the study.

In HeartSteps, data (St) is collected both passively via sensors and via participant self-report. 

Each participant is provided a “Jawbone” band, worn at the wrist, which collects daily step 

count and the amount of sleep the user had the previous night. Furthermore sensors on the 

phone are used to collect a variety of information at each of the 5 time points during the day, 

including the time-stamp, location, busyness of planned activities on the phone calendar and 

other activity on the phone. Each evening, self-report data is collected including utility and 

burden ratings. The proximal response, Yt+1, for activity suggestions is the step count in the 

hour following time t.

A decision time is a point in time at which—based on participant’s current state, past 

behavior, or current context— treatment may need to be delivered. Decision times vary by 

the nature of the intervention component. In HeartSteps, the decision times for activity 

suggestions are 5 times per day over the 42 day study duration. For an alcohol-recovery 

application that provides an intervention when an individual goes within 10 feet of a high 

risk location (e.g. a liquor store), decision points might be every 1 minute, the frequency at 

which the application would get the person’s current location and assess whether she is close 

to a high-risk location. In a long-term study of an intervention for multiple health behaviors, 

the decision points might be weekly or monthly at which times, decisions are made 

regarding whether to change the focus from one behavior (e.g., physical activity) to another 

(e.g., diet). Finally, in many studies there is an option for an individual to press a “panic” 

button, indicating the need for help; for such interventions, decision times correspond to 

times at which the panic button is pressed.

A micro-randomized trial is a trial in which at each decision time t, participants are 

randomized to a treatment option, denoted by At. Treatment options may correspond to 

whether or not a treatment is provided at a decision time; for example in HeartSteps, 

whether or not the individual is provided a lock-screen activity suggestion. Or treatment 

options may be alternative types of treatment that can be provided at the same decision time; 
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for example, a daily step goal treatment might have two options, a fixed 10,000-steps-a-day 

goal or an adaptive goal based on the user’s activity level on the previous day. 

Considerations of treatment burden often imply that the randomization will not be uniform. 

For example in HeartSteps, the randomization probability is 0.4, so that, if an individual is 

always available, on average 2 lock-screen activity messages are delivered per day.

In designing, that is, determining the sample size for, a micro-randomized trial we focus on 

the reduced longitudinal data

The variable, It is an “availability” indicator. The availability indicator is coded as It = 1 if 

the individual is available for treatment and It = 0 otherwise. At some decision times 

feasibility, ethics or burden considerations mean that the individual is unavailable for 

treatment and thus At should not be delivered. Consider again HeartSteps: if sensors indicate 

that the individual is likely driving a car or the individual is currently walking, then the lock-

screen activity message should not be sent. Other examples of when individuals are 

unavailable for treatment include: in the alcohol recovery setting, an “warning” treatment 

would only be potentially provided when sensors indicate that the individual is within 10 

feet of a high risk location or a treatment might only be provided if the individual reports a 

high level of craving. If the application has a panic button, then only in an x second interval 

in which the panic button is pressed is it appropriate to provide “panic button” treatments. 

Individuals may be unavailable for treatment by choice. For example, the HeartSteps 

application permits the individual to turn off the lock-screen activity messages; this option is 

considered critical to maintaining participant buy-in and engagement with HeartSteps. After 

viewing the lock-screen activity message, the individual has the option of turning off the 

lock-screen messages for 4, 8 or 12 hours. After the specified time interval, the delivery of 

lock-screen messages automatically turns on again. To summarize, the availability indicator 

at time t is the indicator for the subpopulation at time t among which we are interested in 

assessing the proximal main effect of the treatment; we are uninterested in assessing the 
proximal main effect of a treatment among individuals for whom it is unethical to provide 
treatment or for whom it makes no scientific sense to provide treatment or among those who 
refuse to be provided a treatment.

3. Proximal Main Effect of a Treatment

As discussed above, treatments in mobile health interventions are often designed so as to 

have a proximal effect (e.g., increase activity in near future, help an individual manage 

current cravings for drugs or food, take medications on schedule, etc.). As a result, a first 

question in developing a mobile health intervention is whether the treatments have a 

proximal effect. Here we develop sample size formulae that guarantee a stated power to 

detect the proximal effect of a treatment. In particular we aim to test if the proximal main 

effect is zero.
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To define the proximal main effect of a treatment, we use potential outcomes [17, 18, 19]. 

Our use of potential outcome notation is slightly more complicated than usual because 

treatment can only be provided when an individual is available. As a result, we index the 

potential outcomes by decision rules that incorporate availability. In particular define d(a, i) 
for a ∈ {0,1}, i ∈ {0,1} by d(a,0) =“unavailable-do nothing” and d(a,1) = a. Then for each a1 

∈ 1 = {0,1}, define D1(a1) = d(a1, I1). Then we denote the potential proximal responses 

following decision time 1 by { } and denote the potential availability 

indicators at decision time 2 by { }. Next for each ā2 = (a1,a2) with a1,a2 ∈ 

{0,1}, define . Define . A potential 

proximal response following decision time 2 and corresponding to ā2 is  and a 

potential availability indicator at decision time 3 is . Similarly, for each āt = (a1, 

…,at) ∈ t = {(a1, …,at)|ai ∈ {0,1}, i = 1, …, t}, define  and 

. For each āt = (a1, …,at) ∈ t, the potential proximal 

response is  (following decision time t −1) and potential availability indicator is 

 at decision time t.

We define the proximal main effect of a treatment at time t among available individuals by:

where the expectation is taken with respect to the distribution of the potential outcomes and 

randomization in Āt−1. This proximal effect is conditional in that the effect of treatment at 

time t is defined for only individuals available for treatment at time t, that is, . 

This proximal effect is a main effect in that the effect is marginal over any effects of Āt−1. 

The former conditional aspect of the definition is related to the concept of viable or feasible 

dynamic treatment regimes [20, 21] in which one assesses only the causal effect of 

treatments that can actually be provided.

Consider the proximal main effect, β(t), as t varies across time. β(t) may vary across time for 

a variety of reasons. To see this consider the case of HeartSteps. Here β(t) might initially 

increase with increasing t as participants learn and practice the activities suggested on the 

lock-screen. For larger t one might expect to see decreasing or flat β(t) due to habituation 

(participants begin to, at least partially, ignore the messages). This time variation in β(t) can 

be attributed to both the immediate effect of a lock-screen activity message as well as 

interactions between the past lock-screen activity messages and the present activity message; 

the time variation occurs at least partially due to the marginal character of β(t). Alternately 

the conditional definition of β(t) means that the effect is only defined among the population 

of individuals who are available at decision time t. Changes in this population may cause 

changes in β(t) across time. Again consider HeartSteps. At earlier time points, participants 

may be highly engaged, yet have not developed habits that in various ways increase their 

Liao et al. Page 5

Stat Med. Author manuscript; available in PMC 2017 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity, thus most participants will be available. However as time progresses, some 

participants may develop sufficiently positive activity habits or anticipate activity 

suggestions, thus at later decision times these participants may be already active and thus 

unavailable to receive a suggestion. Other participants may become increasing disengaged 

and repeatedly turn off the lock-screen activity messages; these participants are also 

unavailable. Thus as time progresses, β(t) may vary due to the subpopulation of participants 

among whom it is appropriate to assess the effect of the lock-screen activity messages.

Our main objective in determining the sample size will be to assure sufficient power to 

detect alternatives to the null hypothesis of no proximal main effect, H0: β(t) = 0, t = 1, … T 
for a trial with T decision points (if β(t) is nonzero then for the population available at 

decision time t, there is a proximal effect). The proposed test will be focused on detecting 

smooth, i.e., continuous in t, alternatives to this null hypothesis.

To express β(t) in terms of the observed data distribution, we assume consistency [18, 19]. 

This assumption is that for each t, the observed Yt and observed It equal the corresponding 

potential outcomes,  whenever Āt−1 = āt−1. This assumption may be 

violated if some of the treatments promote social linkages between participants, for 

example, to enhance social/emotional support or to compete in mobile games. In these cases 

it would be more appropriate to additionally index each individual’s potential outcomes by 

other participants’ treatments. The micro-randomization plus the consistency assumption 

implies that the proximal main effect of treatment at time t among available individuals, β(t) 
can be written as,

where the second equality follows from the randomization of the At’s and the last equality 

follows from the consistency assumption.

4. Test Statistic

Our sample size formula is based on a test statistic for use in testing H0 : β(t) = 0, t = 1, … T 
against a scientifically plausible alternative. This alternative should be formed based on 

conversations with domain experts. Here we construct a test statistic to detect alternatives 

that are, at least approximately, linear in a vector parameter, β, that is, alternatives of the 

form , where the p ×1 vector, Zt, is a function of t and covariates that are unaffected by 

treatment such as time of day or day of week. In the case of HeartSteps, a plausible 

alternative is quadratic:
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(1)

where β = (β1,β2,β3)′ (p = 3). Recall that in HeartSteps there are 5 decision times per day; 

 translates decision times t to days. This rather simplistic parametrization marginalizes 

across the day and treats the weekends and weekdays similarly.

We propose to use the alternate, , t = 1, …, T to construct the test statistic. We 

base the test statistic on the estimator of β in a least squares fit of a working model. A simple 

working model based on the alternative is:

(2)

over all t ∈ {1, …, T}, where ρt is the known randomization probability (P[At = 1] = ρt) and 

the q ×1 vector Bt is a function of t and covariates that are unaffected by treatment such as 

time of day or day of week. Note that At is centered by subtracting off the randomization 

probability; thus the working model for α(t) = E[Yt+1|It = 1] is . The estimators α̂, β̂ 

minimize the least squares error:

(3)

where ℙN{f (X)}is defined as the average of f (X) over the sample.

Note that from a technical perspective, minimizing the least squares criterion, (3), is 

reminiscent of a GEE analysis [22] with identity link function and a working correlation 

matrix equal to the identity. Thus it is natural to consider a non-identity working correlation 

matrix as is common in GEE. This, however, is problematic from a causal inference 

perspective. To see this suppose that the true conditional expectation is in fact 

, that is, the causal parameter, β(t) is equal to . 

Further suppose that the working correlation matrix has off-diagonal elements and that we 

estimate β* by minimizing the weighted (by the inverse of the working correlation matrix) 

least squares criterion. In this case the resulting estimating equations include sums of terms 

such as  for t > s. Unfortunately, both availability 

at time t, It, as well as Yt+1 may be affected by treatment in the past (in particular, As), thus 

absent strong assumptions  is unlikely to be 0. 

Recall that a minimal condition for consistency of estimators of (α*,β*) is that the estimating 

equations have expectation 0, thus absent further assumptions, the estimators derived from 

the weighted least squares criterion are likely biased. Another possibility is to include a 

time-varying variance term in the least squares criterion, that is the tth entry in (3) might be 

weighted by a . This would be useful in the data analysis, however for sample size 

calculations, values of these variances are unlikely to be available. Thus for simplicity we 

use the unweighted least squares criterion in (3).
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Assume that the matrices  and  are invertible. 

The least squares estimators, α̂, β̂ are consistent estimators of

(4)

and

(5)

respectively. Furthermore if β(t) is in fact equal to  for some β, then . This is 

the case even if . In the appendix (Lemma 1), we prove these results 

and also show that, under moment conditions,  is asymptotically normal with 

mean 0 and variance Σβ =Q−1WQ−1 where,

and . To test the null hypothesis H0 : β(t) = 0, t = 1, …, T, 

one can use a test statistic based on the alternative, e.g.

(6)

where Σ̂
β = Q̂−1Ŵ Q̂−1 and Q̂ and Ŵ are plug in estimators. Note that this test statistic 

results from a GEE analysis with identity link function and a working correlation matrix 

equal to the identity matrix for which sample size formulae have been developed [23]. We 

build on this work as follows. As Tu et al. [23] discuss, under the null hypothesis the large 

sample distribution of this statistic is a chi-squared with p degrees of freedom distribution. If 

N, the sample size, is small, then, as recommended by Mancl and DeRouen [24], we make 

small adjustments to improve the small sample approximation to the distribution of the test 

statistic. In particular, they recommend adjusting Ŵ using the “hat” matrix; see the formulae 

for the adjusted Ŵ as well as Q ̂ in Appendix A. Also in small sample settings, investigators 

commonly suggest that instead of using a critical value based on the chi-squared 

distribution, a critical value based on the t–distribution should be used [25]. As we are 

considering a simultaneous test for multiple parameters we form the critical value based on 

Hotelling’s T–squared distribution [26]. Hotelling’s T–squared distribution is a multiple of 

the F distribution given by ; here we use d1 = p and d2 = N−q−p (recall q is 

the number of parameters in the nuisance parameter vector, α); see the appendix for a 
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rationale. In the following, the rejection region for the test of H0 : β(t) = 0, t = 1, … T based 

on (6) is

where α0 is the desired significance level.

5. Sample Size Formulae

As Tu et. al [23] have developed general sample size formulas in the GEE setting, here we 

focus on considerations specific to the setting of micro-randomized trials. To size the study, 

we will determine the sample size needed to detect the alternate, β(t) with:

where  is the average variance and d(t) is a 

standardized treatment effect. When N is large and H1 holds,  is approximately 

distributed as a non-central chi-squared , where cN, the non-centrality parameter, 

satisfies , and 

 [23]. Note that d̃= β̃/σ̄.

Working Assumptions: To derive the sample size formula, we use the form of the non-

centrality parameter of the limiting non-central chi-squared distribution, along with working 

assumptions. The working assumptions are used to simplify the form of . In particular, 

we make the following working assumptions:

a. , for some α ∈ ℝq

b.  for some β ∈ ℝp

c. Var(Yt+1|It = 1, At) is constant in t and At

d. E[ε̃
tεs̃ |It = 1, Is = 1, At, As] is constant in At, As.

where, as before, . See appendix A (Lemma 2) for 

proof of variance formulas under these working assumptions. The above working 

assumptions are somewhat simplistic but as will be seen below the resulting sample 

size formula is robust to moderate violations. First, under these working 

assumptions the alternative hypothesis can be re-written as
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(7)

where d is a p dimensional vector of standardized effects. Furthermore, Σβ is given 

by

and thus cN is given by

(8)

To improve the small sample approximation, we use the multiple of the F-distribution as 

discussed above. Thus the sample size, N, is found by solving

(9)

where Fp,N−q−p;cN is the noncentral F distribution with noncentrality parameter, cN and 1−β0 

is the desired power. The inputs to this sample size formula are , a scientifically 

meaningful value for d (see below for an illustration), the time-varying availability pattern, 

, the desired significance level, α0 and power, 1−β0.

Now we describe how the information needed in the sample size formula might be obtained 

when the alternative is quadratic (p = 3, (1)). In this case we first elicit the initial 

standardized proximal main effect given by . Second we elicit the averaged 

across time, standardized proximal main effect . Lastly we elicit the time 

at which the proximal main effect is maximal, i.e. . These three quantities can 

then be used to solve for d = (d1,d2,d3)′. For example, in HeartSteps, we might want to 

determine the sample size to ensure 80% power when there is no initial treatment effect on 

the first day, and the maximum proximal main effect comes around day 29. We specify the 

expected availability, E[It] to be constant in t and Zt is given by (1). Table I gives sample 

sizes for HeartSteps under a variety of average standardized proximal main effects (d̄).

In the behavioral sciences a standardized effect size of 0.2 is considered small [27]. Thus 

given the very small standardized effect sizes, the sample sizes given in Table I seem 

unbelievably small. Two points are worth making in this regard. First the use of the 

alternative parametric hypothesis (7) in forming the test statistic, implies that both between-

subject as well as within-subject contrasts in proximal responses are used to detect the 

alternative. To see this, note that if we focused on only the first time point, t = 1, and tested 

H0 : β(1) = 0, then an appropriate test would be a two-sample t-test based on the proximal 
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response Y2, in which case the required sample size would be much larger (akin to the 

sample size for a two arm randomized-controlled trial in which 40% of the subjects are 

randomized to the treatment arm). This two-sample t-test uses only between-subject 

contrasts in proximal response to test the hypothesis. The required sample size would be 

even larger for a test of H0 : β(1) = 0, β(2) = 0 in which no relationship between β(1) and 

β(2) is assumed. Conversely the sample size would be smaller if one focused on detecting 

alternatives to H0 : β(1) = 0, β(2) = 0 of the form H1 : β(1) = β(2) ≠ 0. The use of the 

alternative, β(1) = β(2) ≠ 0, allows one to construct tests that use both between-subject as 

well as within-subject contrasts in proximal responses. Our approach is in between these two 

extremes in that we focus on detecting smooth, in t, alternatives to H0 : β(t) = 0 for all t. This 

permits use of both within-as well as between-subject contrasts in proximal responses. The 

assumption of a parsimonious alternative enables the use of smaller sample sizes. A second 

point is that, at this time, there is no general understanding of how large the standardized 

effect size should be for these “in-the-moment” effects of a treatment. Thus these 

standardized effects may or may not be considered small in future.

6. Simulations

We consider a variety of simulations with different generative models to evaluate the 

performance of the sample size formulae. In the simulations presented here, we use the same 

setup as in HeartSteps; see Appendix B for simulations in other setups (Table 4B). 

Specifically, the duration of the study is 42 days and there are 5 decision times within each 

day (T = 210). The randomization probability is 0.4, i.e. ρ = ρt = P(At = 1) = 0.4. The sample 

size formula is given in (8) and (9). All simulations are based on 1,000 simulated data sets.

Throughout this section the inputs to this sample size formula are , the 

time-varying availability pattern, τt = E[It], d, α0 = .05 and power, 1− β0 = .80. The value for 

the vector d is indirectly specified via (a) the time at which the maximal standardized 

proximal main effect is achieved ( ), (b) the averaged across time, standardized 

proximal main effect  and (c) no initial standardized proximal main effect 

( ). The test statistic used to evaluate the sample size formula is given by (6) in 

which Bt and Zt are set to .

The simulation results provided below illustrate that the sample size formula and associated 

test statistic are robust. For convenience we summarize the results here. When the working 

assumptions hold, then under a variety of availability patterns, i.e., time-varying values for τt 

= E[It ] (see Figure 1) the desired Type 1 error and power are preserved. This is also the case 

when past treatment impacts availability. Furthermore the sample size formula is robust to 

deviations from the working assumptions, that is, provides the desired Type 1 error and 

power; this is true for a variety of forms of the true proximal main effect of the treatment 

(see Figure 2), a variety of distributions and correlation patterns for the errors, and 

dependence of Yt+1 on past treatment. In all cases the above robustness occurs as long as we 

provide an approximately true or conservative value for the standardized effect, d and if we 

provide an approximately true or conservative (low) value for the availability, E[It ].
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In our simulations, we note several areas in which the sample size formula is less robust to 

the working assumption (c); this is when the error variance in Yt+1 varies depending on 

whether treatment At = 1 or At = 0 or with time t. In particular if the ratio of Var[Yt+1|It = 1, 

At = 1]/Var[Yt+1|It = 1, At = 0] < 1, then the power is reduced. Also if average variance, 

E[Var[Yt+1|It = 1, At ]] varies greatly with time t, then the power is reduced. See below for 

details. Lastly as would be expected for any sample size formula, using values of the 

standardized effect size, d, or availability that are larger than the truth degrades the power of 

the procedure.

6.1. Working Assumptions Underlying Sample Size Formula are True

First, we considered a variety of settings in which the working assumptions (a)–(d) hold and 

in which the inputs to the sample size formula are correct (d is correct under the alternate 

hypothesis and the time-varying availability E[It] is correct). Neither the working 

assumptions nor the inputs to the sample size formula specify the error distribution, thus in 

the simulation we consider 5 distributions for the errors in the model for Yt+1 including 

independent normal, student’s t and exponential distributions as well as two autoregressive 

(AR) processes; all of these error patterns satisfy 

. Furthermore neither the working 

assumptions nor the inputs to the sample size formula specify the dependence of the 

availability indicator, It on past treatment. Thus we consider settings in which the availability 

decreases as the number of recent treatments increases. For brevity, we provide these 

standard results in the Appendix B (Tables 2B and 3B). The results are generally quite good, 

with very few Type 1 error rates significantly above .05 and power levels significantly 

below .80.

6.2. Working Assumptions Underlying Sample Size Formula are False

Second, we considered a variety of settings in which the working assumptions are false but 

the inputs to the sample size formula are approximately correct as follows. Throughout σ̄2 = 

1.

6.2.1. Working Assumption (a) is Violated—Suppose that the true E[Yt+1|It = 1] ≠ Btα 

for any α ∈ ℝq. In particular, we consider the scenario in which there is a “weekend” effect 

on Yt+1; see other scenario in Appendix B. The data is generated as follows,

where the conditional mean . Wt is a binary variable: Wt = 1 if day of the 

week is time t is a weekend day, and Wt = 0 if the day is a weekday. For simplicity, we 

assume each subject starts on Monday, e.g. for k = 1, …, 6, Wi+35(k−1) = 0, when i = 1, …,

25, Wi+35(k−1) = 1, when i = 26, …,35 (recall that we assume in the simulation that there are 

5 decision time points per day and the length of the study is 6 week). The values of {αi, i = 
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1,2,3} are determined by setting α(1) = 2.5, argmaxt α(t) = T, . 

The error terms  are i.i.d N(0, 1). The day of maximal proximal effect is 29. 

Additionally, different values of the averaged standardized treatment effect and four patterns 

of availability as shown in Figure 1 with average 0.5 and are considered. The type I error 

rate is not affected, thus is omitted here. The simulated power is reported in Table II; for 

more details see Table 6B in Appendix B.

6.2.2. Working Assumption (b) is Violated—Suppose that the true  for any 

β. Instead the vector of standardized effect, d, used in the sample size formula corresponds to 

the projection of d(t), that is,  (recall d(t) = β(t)/σ̄ 

and ρt = ρ). The sample size formula is used with the correct availability pattern, . 

The data for each simulated subject is generated sequentially as follows. For each time t,

for the variety of d(t) = β(t)/σ̄ and E[It ] patterns provided in Figure 2 and in Figure 1 

respectively. The average availability is 0.5. The error terms  are generated as i.i.d. 

N(0, 1). The conditional mean, E[Yt+1|It = 1] = α(t) is given by 

, where α1 = 2.5, α2 = 0.727,α3 = −8.66×10−4 (so that (1/T)Σt 

α(t)− α(1) = 1, argmaxt α(t) = T).

The simulated powers are provided in Table III. In all cases the power is close to .80; this is 

because all of the proximal main effect patterns in Figure 2 are sufficiently well 

approximated by a quadratic in time. See Appendix B for other cases of d(t) and details 

(Figure 5 and Table 9B).

6.2.3. Working Assumption (c) is Violated—Suppose that 

 where σ1t /σ0t ≠ 1. The sample size formula is used 

with the correct pattern for . The data for each simulated subject is generated 

sequentially as follows. For each time t,

where the average across time standardized proximal main effect,  is 0.1 and 

day of maximal effect is equal to 22 or 29. The function α(t) = E[Yt+1|It = 1] is as in the 

prior simulation. The availability, τt = 0.5. The error terms {εt } follow a normal AR(1) 

process, e.g. εt = ϕεt−1 +vt with the variance of vt scaled so that Var[εt ] = 1. Define 
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. Recall the average variance σ̄2 is given by 

. We consider 3 time-varying trends for {σt̄} together with different values of 

σ1t /σ0t ; see Figure (3). In each trend,  is scaled such that σ̄ = 1; thus the standardized 

proximal main effect in the generative model is . In all cases, the simulated type I error 

rates are close to .05 and thus the table is omitted here (see Appendix B, Table 10B). The 

simulated power is given in Table IV.

In the case of σ1t < σ0t, the simulated powers are slightly larger than 0.8, while the simulated 

powers are smaller than 0.8 in the case of σ1t > σ0t. The impact of σ̄
t on the power depends 

on the shape of treatment effect: when β(t) attains its maximum, more than halfway through 

the study, at day 29, a increasing {σ̄t}, trend 1, lowers the power, while a decreasing {σ̄
t}, 

trend 2, improves the power. When β(t) attains a maximal effect midway through the study, 

either decreasing or increasing {σt̄} does not impact power. A large variation in σ̄
t, e.g. trend 

3, reduces the power in all cases. The differing auto correlations of the errors, εt, do not 

affect power; see a more detailed table in Appendix B, Table 10B.

6.2.4. Working Assumption (d) is Violated—We violate assumption (d) by making 

both the availability indicator, It and proximal response, Yt+1 depend on past treatment and 

past proximal responses. The sample size formula is used with the correct value of 

; in particular d is determined by an average proximal main effect of d̄= 0.1, 

day of maximal effect equal to 29 (d1 = 0, d2 = 9.64×10−3, d3 = −1.72×10−4) and with a 

constant availability pattern equal to 0.5. The data for each simulated subject is generated as 

follows. Denote the cumulative treatment over last 24 hours by . In each 

time t,

where  are i.i.d N(0,1) and Trunc(x) := x𝟙|x|≤1+sign(x) |x|>1 (the truncation is used to 

ensure that ). Again α(t) is as in the 

prior simulation. σ* is calculated such that the average variance is equal to 1, e.g. 

. Note that since Ct is centered in both the model for It 

as well as in the model for Yt+1, the standardized proximal main effect is  and E[It ] = τt 

= 0.5. α0(t) is the conditional mean of Yt+1 when It = 0. The form of E[Yt+1|It = 0] is not 

essential: only Ys+1 −E[Ys+1|Is = 0] is used to generate It. In the simulation, E[Ct |It = 1] and 

σ* are calculated by Monte Carlo methods. As before, the simulated type I error are not 

affected; see Table 11B in appendix B. The simulated powers are provided in Table V.
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6.3. Some Practical Guidelines

Third, it is critical to use conservative values of d and availability E[It ] in the sample size 

formula. It is not surprising that the quality of the sample size formula depends on an 

accurate or conservative values of the standardized effects, d, as this is the case for all 

sample size formulas. Additionally availability provides the number of decision points as 

which treatment might be provided per individual and thus the sample size formula should 

be sensitive to availability. To illustrate these points we consider two simulations in which 

the data is generated by

where the εt ’s are i.i.d. standard normals and α(t) is as in the prior simulations. In the first 

simulation, suppose the scientist provides the correct availability pattern, , the 

correct time at which the maximal standardized proximal main effect is achieved 

( ) and the correct initial standardized proximal main effect ( ) but 

provides too low a value of the averaged across time, standardized proximal main effect 

. The simulated power is provided in Appendix B, Table 12B. The 

degradation in power is pronounced as might be expected.

In the second simulation, suppose the scientist provides the correct , correct 

, correct  and although the scientist’s time-varying pattern of 

availability is correct, the magnitude is underestimated. The simulation result is in Appendix 

B, Table 13B. Again the degradation in power is pronounced.

7. Discussion

In this paper, we have introduced the use of micro-randomized trials in mobile health and 

have provided an approach to determining the sample size. More sophisticated sample size 

procedures might be entertained. Certainly it makes sense to include baseline information in 

the sample size procedure, for example in HeartSteps, a natural baseline variable is baseline 

step count. The inclusion of baseline variables in Bt in the regression (2) is straightforward. 

An interesting generalization to the sample size procedure would allow scientists to include 

time-varying variables (in St) as covariates in Bt in the regression (2). This might be a useful 

strategy for reducing the error variance.

An alternate to the micro-randomized trial design is the single case design often used in the 

behavioral sciences [28]. These trials usually only involve 1 to 13 participants [29] and the 

data analyses focus on the examination of visual trends for each participant separately. For 

example during periods when a participant is on treatment the response might be generally 

higher than the height of the response during the time periods in which the participant is off 

treatment. An excellent overview of single case designs and their use for evaluating 

technology based interventions is [30]. This paper illustrates the visual analyses that would 
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be conducted on each participant’s data. A critical assumption is that the effect of the 

treatment is only temporary (no carry-over effect) so that each participant can act as his own 

control. We believe that in settings in which treatments are expected to have sufficiently 

strong effects so as to overwhelm the within person variability in response (thus a visual 

analysis can be compelling), these designs provide an alternative to the micro-randomized 

trial design.

Although this paper has focused on determining the sample size to detect the proximal main 

effect of a treatment with a given power, micro-randomized studies provide data for a variety 

of interesting further analyses. For example, it is of some interest to model and understand 

the predictors of the time-varying availability indicator. In the case of HeartSteps we will 

know why the participant is unavailable (driving a car, already active or has turned off the 

lock-screen messages) so we will be able to consider each type of availability indicator. 

Other very interesting further analyses include assessing interactions between treatments, At 

and context, St, past treatment As, s < t on the proximal response, Yt+1. Also there is much 

interest in using this type of data to construct “dynamic treatment regimes”; in this setting 

these are called Just-in-Time Adaptive Interventions [13]. The sequential micro-

randomizations enhance all of these analyses by reducing causal confounding.
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Appendix A Theoretical Results and Proofs

Lemma 1 (Least Squares Estimator)—The least square estimators α̂, β̂ are consistent 

estimators of α̃, β̃ in (4) and (5). In particular, if  for some vector β*, then β̃ = β*. 

Under moment conditions, we have , where the asymptotic 
variance Σβ is given by Σβ = Q−1WQ−1 where 

 and 

.

Proof: It’s easy to see that the least square estimators satisfy

where  is the covariate at time t. For each t,

so that

as in (4) and (5). We can see that if , then 

. This is true even if 

.

We can easily see that,
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(10)

where op(1) is a term that converges in probability to zero as N goes to infinity. By the 

definitions of α̃ and β̃, we have

So that under moments conditions, we have , where Σθ is given by

In particular, β̂ satisfies  and Σβ is given by

Lemma 2 (Asymptotic Variance Under Working Assumptions)—Assuming 
working assumptions (a)–(d) are true, then under the alternative hypothesis H1 in (7), Σβ and 
cN are given by

Proof: Note that under assumptions (b) and (c), we have  and Var(Yt+1|It = 1, At) 

= σ̄ for each t, and d̃ = d. The middle term, W, in Σβ can be separated by two terms, e.g. 
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. Under assumptions (a), (b) and (c), we 

have E[ε̃
t |It = 1, At] = 0 and . Furthermore, suppose i > 

j, then E[ε̃
iε̃

j Ii Ij (Ai − ρ)(Aj − ρ)]= E[Ii Ij (Aj − ρ)(Ai − ρ)]×E[ε̃
tε̃

s|It = 1, Is = 1, At, As] = 0, 

because Ai⫫{Ii, I j, Aj } and the first term is 0.W is then given by

so that  and 

.

Remark: Working assumption (d) can be replaced by assuming E[Yt+1|It = 1, At, Is = 1, As]

−E[Yt+1|It = 1, At] does not depend on At for any s < t, or some Markovian type of 

assumption, e.g. Yt+1⫫{Ys+1, Is, As, s < t}|It, At. Either of them implies E[ε̃
iε̃

j Ii Ij (Ai−ρi)

(Aj−ρj)]= 0, so that Σβ and cN have the same simplified forms.

Rationale for multiple of F distribution: The distribution of the quadratic form, n(X̄−μ)

′Σ̂−1(X̄ − μ) constructed from a random sample of size n of N(μ,Σ) random variables in 

which Σ̂ is the sample covariance matrix follows a Hotelling’s T-squared distribution. The 

Hotelling’s T-squared distribution is a multiple of the F distribution,  in 

which d1 is the dimension of μ, and d2 is the sample size. Our sample sample approximation 

replaces d1 by p (the number of parameters in the test statistic) and d2 by n−q−p (the sample 

size minus the number of nuisance parameters minus d1).

Formula for adjusted Ŵ and Q ̂: Define a individual-specific residual vector ê as the T ×1 

vector with tth entry . For each individual define the tth row 

of the T ×(p +q) individual-specific matrix X by ( , It(At−ρt)Zt). Then define H = X [ℙN 

X′X]−1 X′. The matrix Q̂−1 is given by the lower right p × p block in the inverse of [ℙN X
′X]; the matrix Ŵ is given by the lower right p × p block in ℙN [XT (I−H)−1êê′(I−H)−1X].

Appendix B Further Simulations and Details

B.1 Simulation Results When Working Assumptions are True

We conduct a variety of simulations in settings in which the working assumptions hold, the 

scientist provides the correct pattern for the expected availability, τt = E[It] and under the 

alternate, the standardized proximal main effect is . Here we will mainly focus on 

the setup where the duration of the study is 42 days and there are 5 decision times within 

Liao et al. Page 20

Stat Med. Author manuscript; available in PMC 2017 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each day, but similar results can be obtained in different setups; see below. The 

randomization probability is 0.4, i.e. ρ = ρt = P(At = 1) = 0.4. The sample size formula is 

given in (8) and (9). The test statistic is given by (6) in which Bt and Zt equal to 

. All simulations are based on 1,000 simulated data sets. The significance 

level is 0.05 and the desired power is 80%.

In the first simulation, the data for each simulated subject is generated sequentially as 

follows. For t = 1, …,T = 210, It, At and Yt+1 are generated by

where  and τt are same as in the sample size model. The conditional mean, E[Yt+1|

It = 1] = α(t) is given by , where α1 = 2.5, α2 = 0.727,α3 = 

−8.66 × 10−4 (so that (1/T) Σt α(t) − α(1) = 1, argmaxt α(t) = T). We consider 5 differing 

distributions for the errors : independent normal; independent (scaled) Student’s t 
distribution with 3 degrees of freedom; independent (centered) exponential distribution with 

λ = 1; a Gaussian AR(1) process, e.g. εt = ϕεt−1+vt, where vt is white noise with variance 

such that Var(εt) = 1; and lastly a Gaussian AR(5) process, e.g. , where 

vt is white noise with variance  such that Var(εt) = 1. In all cases the errors are scaled to 

have mean 0 and variance 1 (i.e. E[εt |It = 1] = 0, Var[εt |At, It = 1] = 1). Additionally four 

availability patterns, e.g. time varying values for τt = E[It], are considered; see Figure (1). 

The simulated type 1 error rate and power when the duration of study is 42 days are reported 

in Table 2B and 3B. The simulation results in other setups, e.g. the length of the study is 4 

week and 8 week, are reported in Table 4B. The associated sample sizes are given in Table 

1B.

Since neither the working assumptions nor the inputs to the sample size formula specify the 

dependence of the availability indicator, It on past treatment. In the second simulation, we 

consider the setting in which the availability decreases as the number of treatments provided 

in the recent past increase. In particular, the data are generated as follows,

Note that since we center  in the generative model of It, the expected 

availability is τt. The specification of α(t), β(t) and εt are same as in the first simulation. The 

simulated type I error rate and power are reported Table 5B.
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B.2 Further Details When Working Assumptions are False

B.2.1 Working Assumption (a) is Violated

Here we consider another setting in which the working assumption (a) is violated, e.g. the 

underlying true E[Yt+1|It = 1] follows a non-quadratic form(recall that Bt is given by 

). The data is generated as follows

where α(t) = E[Yt+1|It = 1] is provided in Figure 4. For each case, α(t) satisfies α(1) = 2.5 

and . The error terms  are i.i.d N(0, 1). The day of maximal 

proximal effect is assumed to be 29. Additionally, different values of averaged standardized 

treatment effect and four patterns of availability in Figure 1 with average 0.5 are considered. 

The simulation results are reported in Table 7B.

B.2.2 Additional Simulation Results When Other Working Assumptions are False

The main body of the paper reports part of the results when working assumptions (b), (c) 

and (d) are violated. Additional simulation results are provided here. In particular, the 

simulation result is reported in Table 9B when d(t) follows other non-quadratic forms, e.g. 

working assumption (b) is false; see Figure 5. The simulated Type 1 error rate and power 

when working assumption (c) is false are reported in Table 10B. The simulated Type 1 error 

rate when working assumption (d) is violated is reported in Table 11B.

B.2.3 Simulation Results when d̄ and τ̄ are misspecified

As discussed in the paper, the first scenario considers the setting in which the scientist 

provides the correct availability pattern, , the correct time at which the maximal 

standardized proximal main effect is achieved ( ) and the correct initial 

standardized proximal main effect ( ) but provides too low a value of the 

averaged across time, standardized proximal main effect . The simulated 

power is provided in Table 12B. In the second scenario, the scientist provides the correct 

, correct , correct  and although the scientist’s time-

varying pattern of availability is correct, the magnitude, e.g. the average availability, is 

underestimated. The simulation result is in Table 13B.
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Table 1B

Sample Sizes when the proximal treatment effect satisfies . The significance level 

is 0.05. The desired power is 0.80.

Duration of Study Availability Pattern Max

τ̄= 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

4-week

Pattern 1

15 59 89 154 43 65 112

22 60 91 158 44 66 114

29 58 87 152 43 64 110

Pattern 2

15 59 89 154 43 65 112

22 60 92 159 44 67 115

29 58 89 154 43 64 111

Pattern 3

15 59 90 157 44 66 113

22 63 96 167 46 69 119

29 62 94 163 45 67 115

Pattern 4

15 59 89 155 43 65 112

22 57 86 150 43 64 110

29 54 82 142 41 61 105

6-week

Pattern 1

22 41 61 105 31 45 76

29 42 64 109 32 47 79

36 41 62 106 31 45 77

Pattern 2

22 41 61 105 31 45 76

29 43 64 110 32 47 80

36 42 62 107 31 46 77

Pattern 3

22 42 62 106 31 46 77

29 44 66 114 33 48 82

36 43 65 112 32 47 80

Pattern 4

22 41 62 106 31 45 77

29 41 62 106 31 46 78

36 40 59 101 30 44 74

8-week

Pattern 1

29 32 47 80 25 35 58

36 33 49 84 26 37 61

43 33 48 82 25 36 60

Pattern 2

29 32 47 80 25 35 58

36 34 49 84 26 37 61

43 33 49 82 25 36 60
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Duration of Study Availability Pattern Max

τ̄= 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

Pattern 3

29 33 48 82 25 36 59

36 35 51 87 26 38 63

43 34 50 86 26 37 62

Pattern 4

29 33 48 81 25 36 59

36 33 49 83 25 36 61

43 32 47 80 25 35 59

“Max” is the day in which the maximal proximal effect is attained.  is the average availability.

Table 2B

Simulated Type I error rate (%) when working assumptions are true. Duration of the study is 

6-week. The associated sample size is given in Table 1B.

Error Term Availability Pattern Max

τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

i.i.d. Normal

Pattern 1

22 3.8 4.5 4.9 4.6 5.3 4.8

29 4.7 6.0 4.6 4.0 3.2 5.0

36 5.0 5.4 4.9 4.3 4.8 4.6

Pattern 2

22 4.8 4.1 4.8 4.4 3.5 4.1

29 4.3 6.2 3.2 4.6 4.2 4.2

36 4.5 4.8 5.2 4.5 3.5 5.4

Pattern 3

22 4.7 4.5 6.3 4.4 4.9 4.9

29 4.1 5.1 4.6 4.3 6.0 5.6

36 4.7 4.4 4.6 4.1 5.1 4.4

Pattern 4

22 5.4 3.5 4.5 4.8 4.7 5.0

29 5.2 4.5 4.5 5.0 5.0 5.1

36 3.8 4.1 5.4 4.7 5.0 5.9

i.i.d. t dist. Pattern 1

22 4.3 4.4 3.2 4.1 4.1 5.2

29 5.0 3.8 3.2 3.7 4.2 6.3

36 4.3 4.5 4.0 5.0 5.7 5.4

i.i.d. Exp. Pattern 1

22 4.5 4.6 4.4 3.7 7.1 3.1

29 4.5 4.6 4.2 4.5 4.5 4.7

36 2.7 4.8 4.8 3.9 3.7 3.4

AR(1), ϕ = −0.6 Pattern 1
22 4.3 5.3 4.6 3.8 4.2 4.0

29 4.6 5.4 5.1 4.0 4.4 4.3
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Error Term Availability Pattern Max

τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

36 4.7 4.0 4.0 4.1 4.2 3.9

AR(1), ϕ = −0.3 Pattern 1

22 5.8 3.4 4.4 3.3 4.0 5.4

29 4.9 4.7 4.6 5.5 5.5 4.5

36 4.0 4.7 4.4 4.9 5.0 4.7

AR(1), ϕ = 0.3 Pattern 1

22 4.6 4.6 4.9 4.3 5.4 4.1

29 4.8 5.3 4.1 4.3 4.2 5.2

36 3.6 3.9 4.9 4.8 4.9 4.9

AR(1), ϕ = 0.6 Pattern 1

22 4.4 5.1 4.9 3.6 5.2 3.7

29 3.7 4.9 4.6 4.5 4.3 5.8

36 4.4 6.7 5.2 5.6 3.6 5.1

AR(5), ϕ = −0.6 Pattern 1

22 4.4 4.7 5.1 4.2 4.5 5.5

29 4.3 5.1 4.3 3.2 3.5 4.2

36 5.3 4.5 6.1 4.2 4.6 5.4

AR(5), ϕ = −0.3 Pattern 1

22 3.7 4.4 6.0 5.0 4.5 3.5

29 4.4 4.7 5.2 5.3 4.5 5.0

36 4.5 5.0 5.1 4.1 5.3 4.8

AR(5), ϕ = 0.3 Pattern 1

22 5.3 4.3 5.7 4.8 4.1 4.3

29 3.9 4.8 4.1 4.0 4.3 4.9

36 4.2 5.5 5.1 3.6 4.5 3.6

AR(5), ϕ = 0.6 Pattern 1

22 5.1 4.5 4.0 4.5 3.8 5.2

29 5.2 4.8 4.5 2.9 5.3 4.4

36 4.1 3.6 4.6 3.9 4.4 4.9

“Max” is the day in which the maximal proximal effect is attained.  is the average availability. 
ϕ is the parameter for AR(1) and AR(5) process. Bold numbers are significantly(at .05 level) greater than .05.

Table 3B

Simulated Power (%) when working assumptions are true. Duration of the study is 6-week. 

The associated sample size is given in Table 1B

Error Term Availability Pattern Max

τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

i.i.d. Normal
Pattern 1

22 80.9 80.0 81.0 78.7 77.5 80.7

29 78.4 80.6 77.8 80.6 78.7 79.0

36 80.2 80.0 79.6 79.4 80.2 77.0
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Error Term Availability Pattern Max

τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

Pattern 2

22 80.3 78.1 78.8 80.6 79.6 79.8

29 80.3 79.1 80.2 77.4 79.9 79.9

36 76.8 79.3 80.2 78.5 78.4 80.0

Pattern 3

22 83.5 81.5 77.7 78.5 81.3 78.7

29 77.9 79.1 78.5 77.8 78.8 79.0

36 77.3 78.1 79.8 79.8 79.9 79.1

Pattern 4

22 77.2 79.7 81.8 80.2 79.0 78.8

29 80.1 78.8 80.3 79.4 80.6 80.1

36 80.5 79.4 80.0 78.9 79.9 78.1

i.i.d. t dist. Pattern 1

22 80.4 81.9 81.0 79.7 79.4 80.7

29 81.7 82.2 82.2 79.1 82.3 77.3

36 80.8 78.8 79.5 81.8 81.6 79.9

i.i.d. Exp. Pattern 1

22 81.0 81.6 79.7 77.2 80.1 80.2

29 80.6 82.4 80.3 79.0 79.8 80.3

36 82.1 79.8 80.8 79.8 79.5 80.3

AR(1), ϕ = −0.6 Pattern 1

22 78.5 80.3 78.5 82.3 79.8 80.3

29 78.7 80.8 80.0 77.1 79.5 77.9

36 77.7 80.3 80.2 78.2 77.4 83.6

AR(1), ϕ = −0.3 Pattern 1

22 77.9 79.0 79.6 80.0 77.8 80.4

29 77.9 79.1 80.0 79.0 78.0 78.4

36 78.1 81.2 80.2 80.7 80.9 78.4

AR(1), ϕ = 0.3 Pattern 1

22 80.2 78.5 80.8 80.5 79.6 82.6

29 78.0 80.0 80.0 78.0 79.4 80.1

36 77.6 82.5 80.6 77.0 78.9 82.0

AR(1), ϕ = 0.6 Pattern 1

22 80.4 79.8 79.5 80.7 79.5 82.0

29 78.9 81.5 79.3 79.5 81.3 79.5

36 79.5 78.4 78.8 80.1 77.9 77.8

AR(5), ϕ = −0.6 Pattern 1

22 79.9 79.4 80.0 78.7 79.2 79.4

29 80.0 78.3 79.1 76.8 79.6 79.3

36 80.5 80.0 79.2 80.1 78.0 80.4

AR(5), ϕ = −0.3 Pattern 1

22 79.2 80.4 81.9 81.3 77.7 79.1

29 80.0 82.3 80.5 80.5 82.2 79.2

36 75.9 78.7 79.3 79.0 79.4 79.9

AR(5), ϕ = 0.3 Pattern 1 22 79.4 80.8 79.8 79.5 77.3 81.2
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Error Term Availability Pattern Max

τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

29 78.0 79.2 79.2 79.2 80.5 78.4

36 78.3 79.1 78.1 80.7 80.5 79.5

AR(5), ϕ = 0.6 Pattern 1

22 80.2 77.9 80.3 78.6 78.4 80.3

29 76.9 79.3 80.2 79.1 80.6 80.5

36 78.7 84.0 80.1 78.8 79.3 78.8

“Max” is the day in which the maximal proximal effect is attained.  is the average availability. 
ϕ is the parameter for AR(1) and AR(5) process. Bold numbers are significantly(at .05 level) less than .80.

Table 4B

Simulated type 1 error rate(%) and power(%) when the duration of study is 4-week and 8-

week. Error terms follow i.i.d. N(0,1). The associated sample size is given in Table 1B.

Duration of Study Availability Pattern Max

τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

4-week

Pattern 1

15 4.1 4.7 6.3 5.3 5.5 5.6

22 5.2 4.4 4.7 3.1 4.7 4.4

29 5.7 5.5 5.6 4.3 4.2 4.2

Pattern 2

15 4.8 4.8 5.0 5.0 5.2 5.3

22 5.1 5.2 4.7 3.7 4.2 3.7

29 5.6 5.1 4.2 4.2 4.9 4.4

Pattern 3

15 4.7 5.0 4.6 6.1 5.3 5.1

22 4.9 4.0 6.6 4.2 3.8 4.1

29 4.7 4.3 5.1 4.6 5.8 3.5

Pattern 4

15 4.9 4.6 4.8 3.0 5.9 3.8

22 3.5 5.1 4.5 5.2 3.8 6.0

29 4.4 6.4 4.7 4.4 4.3 4.7

8-week

Pattern 1

29 4.1 4.6 4.0 5.3 5.0 5.9

36 3.3 4.7 6.5 4.6 5.4 4.3

43 3.2 5.1 5.2 5.0 3.4 5.0

Pattern 2

29 3.9 5.0 4.5 4.2 3.7 4.1

36 3.8 4.6 4.9 4.5 3.4 5.2

43 3.9 5.4 5.0 3.4 3.8 5.0

Pattern 3

29 4.6 4.2 3.7 5.2 4.1 4.0

36 4.3 5.1 6.1 4.6 5.0 4.6

43 4.6 6.0 4.1 5.0 4.9 4.0
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Duration of Study Availability Pattern Max

τ̄ = 0.5 τ̄= 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06

Pattern 4

29 4.5 5.2 2.9 3.6 5.3 4.4

36 4.5 5.2 3.7 2.7 3.7 4.7

43 4.2 7.1 4.9 4.4 4.5 4.8

4 week

Pattern 1

15 80.4 79.0 78.5 79.6 82.8 80.3

22 78.8 78.7 80.7 78.7 79.2 80.0

29 76.2 80.6 80.1 81.3 80.1 79.1

Pattern 2

15 82.4 77.8 77.2 75.9 80.0 78.9

22 77.2 80.3 81.5 75.8 80.7 82.0

29 80.1 79.3 80.1 78.0 77.7 76.9

Pattern 3

15 79.3 79.8 79.2 79.1 76.5 80.8

22 80.0 80.0 79.0 79.0 80.2 81.8

29 79.4 80.7 79.3 80.4 79.6 79.2

Pattern 4

15 82.6 78.3 79.2 80.5 80.0 79.5

22 80.4 80.7 79.3 79.1 78.5 79.2

29 78.4 79.2 78.5 79.6 79.2 80.5

8 week

Pattern 1

29 79.7 77.3 76.4 79.1 82.2 79.6

36 78.8 78.6 81.5 80.3 78.2 79.6

43 80.4 77.8 78.7 79.1 80.3 80.1

Pattern 2

29 79.3 81.1 79.8 78.7 79.7 80.2

36 81.2 78.5 79.0 81.3 80.8 78.2

43 80.3 81.5 77.5 75.1 78.8 78.1

Pattern 3

29 80.1 79.0 77.1 78.2 80.4 78.8

36 79.5 79.9 79.6 80.0 80.8 79.6

43 80.5 79.5 79.6 79.4 79.4 80.2

Pattern 4

29 82.1 79.7 80.7 79.7 79.0 78.4

36 77.8 78.2 80.1 77.9 76.9 79.5

43 79.6 78.5 78.1 79.4 80.6 79.5

“Max” is the day in which the maximal proximal effect is attained.  is the average availability. 
Bold numbers are significantly(at .05 level) greater than .05 (for type I error)and less than .80 (for power).
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Table 5B

Simulated Type 1 error rate(%) and power(%) when the availability indicator, It depends on 

the recent past treatments with η = −0.2. The expected availability is constant in t and equal 

to 0.5. Duration of study is 42 days. The associated sample size is given in Table 1B.

Error Term ϕ Max

τ̄ = 0.5 τ̄= 0.7 τ̄ = 0.5 τ̄ = 0.7

Average Proximal Effect

0.10 0.08 0.06 0.10 0.08 0.06 0.10 0.08 0.06 0.10 0.08 0.06

AR(1)

−0.6

22 4.8 5.4 4.5 3.4 5.8 3.7 81.5 78.0 79.4 81.7 77.9 80.7

29 4.7 4.4 4.2 4.0 4.9 4.6 79.4 80.9 80.7 78.2 79.2 79.7

36 4.3 5.3 4.4 4.2 3.9 5.5 79.5 81.5 79.8 80.2 79.2 80.7

−0.3

22 4.7 3.8 4.4 3.5 4.4 4.6 78.7 81.2 80.3 80.9 77.9 78.5

29 3.8 4.0 4.9 3.5 5.0 4.4 80.1 79.5 81.2 77.3 79.5 77.1

36 2.7 5.7 4.0 3.3 4.7 5.2 76.8 80.4 79.9 78.8 79.5 79.4

0.3

22 4.8 4.1 4.4 5.0 5.4 3.6 83.0 79.8 79.4 81.3 78.9 79.2

29 4.9 4.6 5.0 4.4 5.5 5.6 79.5 80.3 82.2 78.5 80.7 77.6

36 4.9 4.9 4.2 3.3 4.5 4.8 80.0 78.9 79.5 81.7 79.4 79.6

0.6

22 4.5 5.1 4.7 4.3 4.6 4.0 80.3 78.9 81.1 81.2 81.5 77.9

29 3.4 4.5 5.1 4.4 4.3 4.6 79.3 76.2 79.4 81.3 80.6 79.4

36 4.8 4.3 4.2 4.1 4.5 4.5 77.5 80.5 80.9 76.7 80.0 79.7

AR(5)

−0.6

22 4.8 4.6 4.3 3.7 4.7 3.5 81.9 81.4 81.6 79.8 78.3 78.9

29 6.5 4.1 4.5 3.3 4.5 4.8 77.5 79.9 79.8 79.9 79.3 79.3

36 3.5 5.7 4.4 4.6 4.7 5.7 77.8 80.8 78.6 77.9 79.2 81.7

−0.3

22 4.3 4.9 4.0 4.3 5.6 5.0 77.7 81.8 80.0 80.1 80.3 81.1

29 3.9 4.0 5.0 3.2 5.7 5.1 80.0 80.9 80.3 80.6 80.3 77.8

36 4.0 3.6 4.7 4.8 4.8 3.2 79.0 80.4 80.8 80.1 79.0 76.5

0.3

22 3.5 4.9 5.0 4.1 3.8 4.1 77.4 82.9 78.5 80.6 81.4 80.2

29 4.6 6.1 4.7 4.7 4.1 4.1 78.7 82.0 78.0 81.4 76.5 81.3

36 5.1 4.4 4.0 3.2 3.9 4.7 79.7 81.8 78.6 79.1 77.4 79.0

0.6

22 5.0 4.6 4.3 4.0 4.0 5.5 80.5 79.4 82.5 79.2 81.1 81.0

29 5.6 4.3 6.9 5.6 3.4 3.1 78.3 80.0 80.5 80.8 80.4 78.4

36 4.8 4.8 4.8 3.5 3.7 5.5 78.2 80.5 80.3 77.6 80.5 79.1

“Max” is the day in which the maximal proximal effect is attained.  is the average availability. 
ϕ is the parameter for AR(1) and AR(5) process. Bold numbers are significantly(at .05 level) greater than .05 and less than .
80.
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Table 6B

Simulated type I error rate(%) and power(%) when working assumption (a) is violated. 

Scenario 1. The average availability is 0.5. The day of maximal proximal effect is 29.

θ d̄
Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.5d̄

0.10 5.5 4.6 4.2 5.1 79.7 79.4 80.5 80.1

0.08 5.1 4.4 5.4 4.6 80.4 78.9 80.4 78.7

0.06 4.1 5.5 4.6 4.3 77.5 82.7 81.0 81.0

d̄

0.10 4.8 4.3 3.7 4.1 79.3 78.3 77.8 79.4

0.08 5.4 4.9 4.6 5.5 78.8 79.3 78.0 80.6

0.06 4.4 3.5 5.1 4.6 78.4 79.3 79.0 80.4

1.5d̄

0.10 4.4 4.1 4.4 4.8 78.3 80.5 78.4 79.9

0.08 5.0 4.3 4.3 3.9 80.5 79.7 78.7 81.9

0.06 4.0 5.1 5.5 5.6 77.2 80.8 81.6 80.3

2d̄

0.10 4.1 3.8 5.0 5.5 77.7 78.8 79.0 78.4

0.08 4.0 5.0 3.7 5.7 79.3 81.5 79.1 79.4

0.06 4.9 4.3 5.2 5.3 80.8 79.0 77.5 80.9

 is the average proximal effect. θ is the coefficient of Wt in E[Yt+1|It = 1]. Bold Numbers are 
significantly (at .05 level) greater than .05 (for type I error rate) and lower than 0.80(for power).

Figure 4. 
Conditional expectation of proximal response, E[Yt+1|It = 1]. The horizontal axis is the 

decision time point. The vertical axis is E[Yt+1|It = 1].
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Table 7B

Simulated Type 1 error rate(%) and power (%) when working assumption (a) is violated. 

Scenario 2. The shapes of α(t) = E[Yt+1|It = 1] and patterns of availability are provided in 

Figure 4 and Figure 1. The average availability is 0.5. The day of maximal proximal effect is 

29. The associated sample size is given in Table 1B.

α(t) d̄
Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 1 Pattern 2 Pattern 3 Pattern 4

Shape 1

0.10 3.6 4.3 4.7 4.5 77.4 80.2 76.2 75.9

0.08 5.9 3.8 4.1 3.4 79.7 80.1 78.9 80.6

0.06 4.6 5.7 4.2 6.5 78.7 76.3 78.3 79.9

Shape 2

0.10 4.8 4.8 4.4 4.1 79.2 79.1 78.5 79.7

0.08 3.9 5.4 4.8 4.3 77.7 80.4 76.8 80.9

0.06 5.1 5.5 3.4 4.9 78.3 79.4 79.8 80.2

Shape 3

0.10 5.1 3.5 4.3 4.4 79.1 79.4 75.6 78.0

0.08 4.6 5.0 6.2 3.8 78.3 78.1 79.1 78.1

0.06 4.8 4.4 5.4 4.2 78.0 78.3 79.8 77.7

 is the average standardized treatment effect. Bold numbers are significantly (at .05 level) greater 
than .05 (for type I error rate) and lower than 0.80(for power).

Figure 5. 

Proximal Main Effects of Treatment, : representing maintained, slightly degraded 

and severely degraded time-varying treatment effects. The horizontal axis is the decision 
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time point. The vertical axis is the standardized treatment effect. The “Max” in the title 

refers to the day of maximal effect. The average standardized proximal effect is 0.1 in all 

plots.

Table 10B

Simulated Type I error rate(%) and power(%) when working assumption (c) is violated. The 

trends of σ̄
t are provided in Figure 3. The standardized average effect is 0.1. E[It] = 0.5. The 

associated sample sizes are 41 and 42 when the day of maximal effect is 22 and 29.

ϕ in AR(1)
Max = 22 Max = 22

const. trend 1 trend 2 trend 3 const. trend 1 trend 2 trend 3

−0.6

0.8 4.1 4.3 3.3 5.4 4.7 4.9 2.8 4.1

1.0 4.6 5.0 4.0 4.4 4.4 4.8 4.2 4.3

1.2 3.8 4.5 5.2 5.5 4.3 4.1 4.5 3.8

−0.3

0.8 5.2 4.7 4.0 3.4 5.4 4.9 6.2 4.5

1.0 4.9 4.5 4.5 4.3 5.2 5.1 4.0 3.7

1.2 5.4 4.6 4.1 3.8 3.7 5.2 4.3 5.0

0

0.8 4.8 4.0 4.1 3.9 4.7 5.2 3.7 4.2

1.0 5.4 4.0 5.8 3.9 4.1 4.0 5.9 5.7

1.2 4.4 4.9 5.0 4.6 3.7 4.8 4.4 4.9

0.3

0.8 5.3 4.4 4.7 3.2 4.6 5.4 5.6 4.1

1.0 5.5 4.0 3.4 3.7 5.0 4.6 4.0 3.6

1.2 3.8 4.5 4.5 4.8 4.5 5.0 6.2 4.3

0.6

0.8 5.5 3.9 5.3 3.8 3.3 3.5 5.1 4.2

1.0 4.0 3.7 5.2 5.1 4.8 5.1 5.0 4.7

1.2 4.5 5.1 4.6 4.9 4.5 4.4 4.7 4.8

−0.6

0.8 82.8 82.7 83.7 79.9 83.6 80.6 88.7 79.2

1.0 81.1 79.1 79.9 74.8 77.7 74.3 84.8 70.4

1.2 76.6 76.3 76.3 70.6 77.6 72.0 80.7 70.4

−0.3

0.8 83.0 83.0 86.0 80.3 82.7 79.2 87.9 78.0

1.0 77.6 81.4 80.7 74.9 79.1 74.5 86.0 73.7

1.2 78.2 76.9 77.3 73.4 74.4 71.2 81.0 70.7

0

0.8 84.6 84.6 82.1 79.0 81.8 81.5 88.0 78.0

1.0 80.1 78.6 80.9 73.6 77.7 76.5 86.1 71.8

1.2 76.0 76.7 77.4 70.6 74.5 69.9 83.4 69.6

0.3

0.8 83.6 79.7 84.6 79.7 82.1 81.7 88.2 75.7

1.0 81.5 82.4 82.3 73.9 79.5 74.6 85.1 71.5

1.2 74.8 76.6 78.2 71.1 75.5 71.1 82.5 70.1

0.6
0.8 81.4 83.1 83.5 80.5 83.1 77.1 86.6 76.9

1.0 80.7 76.4 79.0 74.8 80.4 73.4 84.7 76.8
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ϕ in AR(1)
Max = 22 Max = 22

const. trend 1 trend 2 trend 3 const. trend 1 trend 2 trend 3

1.2 77.0 77.5 77.0 73.5 74.4 72.5 81.6 69.4

ϕ is the parameter in AR(1) process for . Bold numbers are significantly(at .05 level) greater than .05 (for type I 
error)and less than .80 (for power).

Table 11B

Simulated Type I error rate(%) when working assumption (d) is violated. E[It] = 0.5. The 

proximal effect  satisfies the average is 0.1 and day of maximal effect is 29. N = 42.

Parameters in It

γ2
−0.1 −0.2 −0.3

γ1

η1 = −0.1, η2 = −0.1

−0.2 5.7 3.2 3.9

−0.5 3.2 4.2 4.9

−0.8 4.2 5.1 5.5

η1 = −0.2, η2 = −0.1

−0.2 5.4 3.8 3.9

−0.5 4.4 4.4 4.8

−0.8 4.7 4.3 4.6

η1 = −0.1, η2 = −0.2

−0.2 4.5 5.0 5.0

−0.5 4.9 3.8 6.0

−0.8 4.7 4.8 4.8

η1, η2 are parameters in generating It . γ1, γ2 are coefficients in the model of Yt+1. All Numbers in this table are 
significantly (at .05 level) greater than .05.

Table 12B

Degradation in Power when average proximal main effect is underestimated. The day of 

maximal treatment effect is attained at day 29 and the average availability is 0.5 in all cases. 

The associated sample sizes for each value of average treatment effect are provided in first 

column.

d̄ in Sample Size Formula True d̄
Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.10 (N = 42)

0.098 76.2 78.9 77.6 78.6

0.096 75.1 74.6 78.8 74.0

0.094 73.7 70.7 75.4 73.4

0.092 71.5 71.6 73.2 71.6

0.090 68.9 68.4 69.6 67.3

0.088 65.4 65.6 66.1 65.7

0.086 66.4 67.9 65.2 66.7

0.084 62.3 63.4 63.0 59.6

0.082 60.0 60.2 60.5 58.2

0.080 58.9 59.8 57.8 61.4

0.08(N = 64) 0.078 78.2 80.2 76.8 75.8
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d̄ in Sample Size Formula True d̄
Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.076 77.3 76.7 76.2 75.4

0.074 73.1 72.2 71.2 71.4

0.072 70.7 71.0 69.4 68.2

0.070 68.2 66.0 65.2 66.1

0.068 65.5 64.3 64.6 65.7

0.066 62.8 62.3 61.8 59.4

0.064 61.9 58.5 59.5 62.1

0.062 53.9 52.6 57.0 56.9

0.060 54.6 51.1 54.8 53.4

0.06(N = 109)

0.058 75.6 76.9 74.0 78.1

0.056 73.9 73.1 73.1 72.7

0.054 68.6 71.1 69.3 68.5

0.052 65.4 69.4 63.6 66.8

0.050 61.0 62.8 64.1 63.2

0.048 57.4 58.6 56.4 56.1

0.046 53.6 53.4 52.9 54.8

0.044 52.0 48.9 50.1 53.0

0.042 45.7 43.9 44.9 46.4

0.040 40.4 42.2 42.3 42.7

Table 13B

Degradation in Power when average availability is underestimated. The day of maximal 

treatment effect is attained at day 29 and the average proximal main effect is 0.1 in all cases. 

The associated sample sizes are given in first column.

 in Sample Size 
Formula True 

Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.5 (N = 42)

0.048 76.4 81.7 76.0 78.2

0.046 73.9 75.5 73.6 75.8

0.044 70.6 72.1 71.0 71.7

0.042 70.8 70.6 74.2 70.3

0.040 70.3 69.2 65.7 68.6

0.038 66.0 66.8 67.8 67.0

0.036 64.0 62.5 62.4 62.9

0.034 60.8 61.3 59.4 63.9

0.032 56.4 59.2 54.7 59.8

0.030 51.4 53.1 51.9 54.5

0.7 (N = 32)
0.068 79.5 76.1 79.1 75.0

0.066 77.3 75.7 74.0 76.4
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 in Sample Size 
Formula True 

Availability Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4

0.064 74.5 74.7 73.5 77.1

0.062 73.2 73.0 75.1 72.5

0.060 69.8 70.5 73.5 72.5

0.058 71.0 69.6 71.3 67.3

0.056 68.8 70.3 66.6 64.0

0.054 68.1 65.8 65.3 68.6

0.052 62.4 64.9 65.6 62.9

0.050 60.6 63.3 62.8 61.4
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Figure 1. 
Availability Patterns. The x-axis is decision time point and y-axis is the expected availability. 

Pattern 2 represents availability varying by day of the week with higher availability on the 

weekends and lower mid-week. The average availability is 0.5 in all cases.
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Figure 2. 

Standardized Proximal Main Effects of Treatment, : representing maintained and 

severely degraded time-varying proximal treatment effects. The horizontal axis is the 

decision time point. The vertical axis is the standardized treatment effect. The “Max” in the 

titles refer to the day of maximal proximal effect. The average standardized proximal effect 

is d̄= 0.1 in all plots.
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Figure 3. 

Trend of σ̄
t : For all trends,  is scaled so that . In Trend 3, the variance, 

 peaks on weekends. In particular, σ̄
7k+i = 0.8 for i = 1, …,5 and 

σ̄
7k+i = 1.5 for i = 6,7.
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Table I

Illustrative sample sizes for HeartSteps. The day of maximal treatment effect is 29. The expected availability is 

constant in t.

E[It]
0.7 0.6 0.5 0.4

d̄

0.10 32 36 42 52

0.09 38 44 51 63

0.08 47 54 64 78

0.07 60 69 81 101

0.06 79 92 109 135

0.05 112 130 155 193

 is the average standardized treatment effect.
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Table II

Simulated power when working assumption (a) is violated. The patterns of availability are provided in Figure 

1.

θ d̄

Availability Pattern

Pattern 1 Pattern 2 Pattern 3

0.5d̄
0.10 0.80 0.79 0.81

0.06 0.78 0.83 0.81

1d̄
0.10 0.79 0.78 0.78

0.06 0.78 0.79 0.79

1.5d̄
0.10 0.78 0.81 0.78

0.06 0.77 0.81 0.82

2d̄
0.10 0.78 0.79 0.79

0.06 0.81 0.79 0.78

θ is the coefficient of Wt in E[Yt+1|It = 1].  is the average standardized treatment effect. Bold Numbers are significantly 

(at .05 level) greater lower than 0.80.
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Table V

Simulated Power when working assumption (d) is false. The expected availability is 0.5, the average proximal 

main effect d̄= 0.1 and the maximal effect is attained at day 29. The associated sample size is 42.

Parameters in It

γ2
−0.1 −0.2 −0.3

γ1

η1 = −0.1,η2 = −0.1 −0.2 0.80 0.81 0.79

−0.5 0.79 0.81 0.80

−0.8 0.81 0.82 0.79

η1 = −0.2,η2 = −0.1 −0.2 0.78 0.82 0.79

−0.5 0.81 0.77 0.77

−0.8 0.81 0.79 0.78

η1 = −0.1,η2 = −0.2 −0.2 0.78 0.78 0.80

−0.5 0.80 0.79 0.78

−0.8 0.78 0.79 0.80

γ1 and γ2 are parameters for the cumulative treatments in the model of Yt+1. η1 and η2 are parameters in the model of It. Bold numbers are 

significantly (at .05 level) less than .80.
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