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Control Engineering Methods for the Design
of Robust Behavioral Treatments

Korkut Bekiroglu, Constantino Lagoa, Suzan A. Murphy, and Stephanie T. Lanza

Abstract—1In this paper, a robust control approach is used to
address the problem of adaptive behavioral treatment design.
Human behavior (e.g., smoking and exercise) and reactions
to treatment are complex and depend on many unmeasurable
external stimuli, some of which are unknown. Thus, it is
crucial to model human behavior over many subject responses.
We propose a simple (low order) uncertain affine model subject to
uncertainties whose response covers the most probable behavioral
responses. The proposed model contains two different types of
uncertainties: uncertainty of the dynamics and external pertur-
bations that patients face in their daily life. Once the uncertain
model is defined, we demonstrate how least absolute shrinkage
and selection operator (lasso) can be used as an identification
tool. The lasso algorithm provides a way to directly estimate
a model subject to sparse perturbations. With this estimated
model, a robust control algorithm is developed, where one relies
on the special structure of the uncertainty to develop efficient
optimization algorithms. This paper concludes by using the
proposed algorithm in a numerical experiment that simulates
treatment for the urge to smoke.

Index Terms— Adaptive treatment design, adaptive-robust
intervention, behavioral treatment design, min-max structured
robust optimization, receding horizon control.
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Wi kth element of signal w, wy € R,
and k =[1,2,...,00].

Vector Wiek+k—1) € RX that is
segment of signal W: Wik —1) =
(Wi Wil -.o Wrpk—1]

Dimension of vector W.x4x —1)-
Elements of vector Wkt k1) € RK
to the diagonal of a RX*K matrix.
Largest integer less than or equal to y.
Standard Gaussian distribution with
mean x and variance o2,

p-norm of vector Wkt —1) that is:
IWarrk—nll, = PCAEET w12,
Number of the nonzero element of
vector Wx+x—1) that is

Wtk -1llo = #{i : w; # 0}

W(k:k+K—1)

dim (W (kk+ k1))
diag(W(kk+x—1))

Lyl
N(u,o?)

IWkk+k—1)llp

W kk+x -1y llo

I. INTRODUCTION

ROLIFERATION of portable devices that collect patient
information very frequently (i.e., intensive longitudinal
data) and enable timely treatment has opened the possibility
of developing effective personalized interventions [1]. These
types of interventions can be behavioral or pharmacological
or a combination according to the structure of the specific
behavioral problem [2]. This is currently being investigated
in smoking addiction, alcohol addiction, exercise behavior,
and so on. Dynamical modeling of behavior is critical in
developing control algorithms [3]-[6]. However, very little
attention has been paid to the fact that human behavior has
a significant amount of uncertainty and that this uncertainty
should be addressed systematically. This paper provides an
approach for modeling patient behavior and designing a robust
adaptive treatment that considers both the present state of the
patient and the probable perturbations to expected behavior.
Previous researchers have applied control concepts in behav-
ioral research [3]-[5], [7]-[9], but the use of feedback is still a
novel approach. In addition to feedback, additional constraints
for patients’ limitations and measured disturbances can be
easily addressed in controller-design-based interventions [10].
In this paper, we discuss a possible control engineering-
based approach and explain how robust control tools can
be used to design robust adaptive treatments. To design a
robust algorithm, the first step is to define the uncertainties
observed in the treatment responses. Therefore, we propose
a class of uncertain affine models suitable for this task and
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discuss a way to identify such models using available tools,
such as lasso [11]. The second step is to show that a robust
control algorithm can be developed that relies on the special
structure of the uncertainty in the model to develop efficient
optimization algorithms.

Only simple affine models will be considered here, because
very little is known about the structure of human behavior.
Nevertheless, this approach can be extended to more complex
models, such as nonlinear and time-varying models if one has
better knowledge about the dynamics of the human behavior.

Besides the problem of choosing the right model structure,
behavioral data have other remarkable challenges. The col-
lection of behavioral data is often done over long periods of
time and one cannot usually perform repeated experiments
to improve the quality of the data. As a result, unlike most
physical systems, behavioral data are generally more noisy,
incomplete, and inconsistent. Hence, designers of treatments
typically work with an incomplete, noisy data set from multi-
ple patients [12]-[15]. Multiple participants are used to attempt
to capture a more complete data set such that the gaps in one
participant’s data are filled by another participant. Therefore,
we also use data from several participants to determine a model
that both is meaningful and can be used to design treatment
for a specific group of individuals.

In this paper, we discuss a specific structure for model
uncertainty that can be used for modeling human behavior.
When selecting a type of uncertainty, the objective is to
address: 1) differences in the behavior of different participants
modeled as white Gaussian noise and 2) sparse external
perturbations that can be used to model life events that affect
the response to treatment. With the model structure defined
earlier, lasso [11] is used for parameter identification and
uncertainty quantification because it provides a way to directly
estimate a model subject to sparse perturbations. Given that
the models extracted from behavioral data usually have a
large amount of uncertainty, there is a need for feedback and,
especially, robustness. Hence, in the second part of this paper,
an algorithm is proposed for a controller design that is robust
with respect to the specific type of uncertainties considered.

The specific control design technique used in this paper
is based on a robust model predictive controller (MPC)
approach [16]. A computationally simple cost function is
used, namely, a quadratic one, and the corresponding robust
optimization problem is formulated. In formulating the control
problem, one considers all different combinations of treat-
ments available. The resulting robust optimization problem
is then solved by relying on results from robust optimiza-
tion [17]-[19] and by exploiting the specific structure of the
uncertainty.

Throughout this paper, the problem of designing a treatment
for smoking urge is used as our example. Although the treat-
ment is assumed as ON/OFF (apply treatment or no treatment)
in this specific example, this is not always the case. There
are situations where one not only has to decide when/which
treatment to apply but also the dosage (see [20] for a more
detailed explanation of characteristics of behavioral problems).
The presented method can be easily modified to accommodate
different types (behavioral, pharmacological, or combined) and

levels (dosage) of treatments. Note that in this example, the
term treatment is used to refer to an intervention where text
messages are sent to the subject.

A. Previous Work

Adaptive interventions are sequences of treatments that
are adapted and readapted to individual circumstances and
behaviors in order to achieve and maintain health behavior
change [12], [13]. These interventions may be provided many
times (i.e., tens, hundreds, or even thousands of treatment
occasions during the entire treatment period). The interven-
tions are often delivered via portable devices, as intensive
interventions. Since these interventions adapt to individual
progress, it is effective to prevent insufficient response and
react immediately against the unexpected shock on behavior.
Therefore, scientists in the social and behavioral sciences have
been working on finding systematic ways to use portable
devices such as smart phones to change health behavior or
maintain healthy behavior in real time. Consequently, adaptive
interventions are being developed by social and behavioral
scientists for different areas, such as hypertension [14], sub-
stance abuse [15], criminal justice [21], mental health [22],
and Alzheimer’s disease [23].

Engineering concepts, such as dynamical modeling, have
been applied to modeling and controlling behavior [6].
References [3]-[5] present special issues that arise in applying
such approaches to behavioral research. These studies employ
both time-invariant and time-varying models, depending on the
specific problem. Some extend studies use controller design
methods to design adaptive interventions for special problems
in behavioral science [7]-[9]. This paper defines uncertainties
in behavior more explicitly than previous studies and discusses
their effects on the robustness of the algorithm. In general,
according to the intervention design problem, the MPC design
method is preferred. Preliminary results of this paper were
presented in [24]. More detailed explanations of modeling
behavior and identification are presented in this paper. The
complete proofs are also provided, along with simulations.

This paper is organized as follows. In Section II, we
introduce the model that will be used to approximate patient
behavior and justify its use. In Section III, we discuss a way
to identify the model’s parameters from patient study data.
In Section IV, an MPC formulation of the robust control
problem is introduced. In Section V, a simulation of the
application of the proposed approach is presented with a
simulated smoking cessation treatment from [25]. In this
section, some hypothetical individual results are also given to
show how a control algorithm works. Finally, in Section VI,
we present some concluding remarks.

II. MODEL

As mentioned in Section I, data on human behavior usually
involve several subjects with many gaps in information over
time. Moreover, behavior might change with time and vary
from subject to subject. Therefore, it is very unlikely that one
can accurately specify a complex model of behavior. One can
use a simple model to approximate patient behavior or the
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main dynamics of the subject and, at the same time, highlight
the fact that there is a substantial amount of uncertainty in it.
Hence, a possible model for identification is a set of affine
difference equations. The difference model used in this paper
is of the form

n—1
Yeri =ag+ O [Aiyii + BiTiil+ Dey + Ewe (1)
i=0

where yr € R™ is the measured output vector at time k,
Ty € R, and Ty € 7 is the control input (i.e., treatment),
where 7 is a set of all available treatments. In many cases,
this set has a finite number of elements. Unmeasurable sparse
exogenous perturbations are denoted by wx € R and ¢, € R™,
which represents uncertainty in the model. The affine term
vector is ay € R™, and A; € R™™, B; € R", D e R™*",
and E € R™ are coefficients matrices.

The dynamics of behavior are very complex and hard to
control because of the uncertainties on behaviors. Therefore,
the uncertain difference equation in (1) is used to model a
large set of responses to behavioral treatment. In addition to
the dynamics of behavior, which are contaminated by Gaussian
noise, an unmeasured exogenous input is added to the model
to represent unexpected influences.

We use as a motivating example a hypothetical study of
smoking cessation. In this example, we address the prob-
lem of treatment design after quit day (i.e., day on which
an individual quits smoking). Patients usually have different
dynamics before and after quit day and different treatments
should be designed for each of these cases. Since the objective
of this paper is to develop a general design procedure, we only
consider the after quit day case as an example of treatment
design. The procedure developed can also be used for before
quit day case.

In the smoking cessation model, there are three different
variables that one can measure: smoking urge (denoted by su);
negative affect, (na), which is a single scale indicating an
adverse mood state; and self-efficacy, (se), which represents
an individual’s belief in their ability to abstain from smoking.
With these variables, the following model is proposed:

SUf+1 ay n—1 a; b ¢ SUg—;
nagy | = |df |+ Z di e fi||nag;
S€k+1 8f i=0 | | & hi ri| | Sek—i
n—1 0 1
+ Z |:qij| Ti—ip+ 0] w
i=0 Si 0
1 0 O gl(csu)
+0 1 0of|gM|. 2)
0 0 1 ]Ese)

Remark 1: The signs of several of these coefficients are
assumed to be known in advance for this example. For exam-
ple, negative affect (na) increases smoking urge (su), whereas
self-efficacy (se) decreases it. More information about the
dynamics of the smoking urge can be found in [26] and [27].
This information can be used in two different ways: 1) it can be

given to the identification algorithm as additional constraints
or 2) it can be utilized to validate the model.

This model also shows that smoking urge cannot be directly
controlled, but if the negative affect can be decreased and self-
efficacy can be increased by applying treatment T, the desired
smoking urge level can be achieved under the uncertainties.

One should first note that the model above is an uncertain
affine model. One of the reasons why this structure was chosen
was the fact that a model should not be obtained just from data,
and it should also leverage characteristics determined by prior
behavioral research. For instance, patients smoke cigarettes
to regulate the smoking urge set point (see [3], [28] for
more detailed explanation of smoking dynamics). Therefore,
an affine term (constant term in the model) is added to the
model to represent this set point.

The model in (1) is called a structural equation
model (SEM) in social science [29]. Similar to SEM models,
an affine model for smoking cessation is preferred, because
the equilibrium point of the uncontrolled system is often not
the origin. The model is obtained by using data from several
patients and differences in patients are typically modeled
as Gaussian random variables &. The external perturbation
w € L% is motivated by a different kind of uncertainty in
human behavior. The way the subjects behave is influenced by
external sparse events that temporarily affect his/her response
to treatment. Hence, one needs an uncertainty that is sparse,
bounded in magnitude, and with limited cumulative effect.
As a result, it is assumed that the segment of perturbation
signal w € L is bounded in the ¢j-norm, {s-norm, and
{o-norm. For this situation, a possible signal set W, which is
used in this paper, is the following. Given an MPC control
window of length K and k, the set W is

Wik -—nllt <7, Wekak-nllo = K/¢}.  (3)

W = (we £ forall k, [Woerk—1)lloo <

o € N is bound on the magnitude of the perturbation,
y € N is bound on cumulative effect, and ¢ € N enforces
the sparsity constraint on vector W.x4x —1)-

III. IDENTIFICATION OF THE MODEL
AND PERTURBATIONS

To estimate the coefficients from study data, we start by
noting that the model above can be taken to represent the
relations among the variables as

Y =Hf+e. )

In this model, the unknown vector f contains the parame-
ters of the model and vector w, vector Y is a function of
the measurements, and matrix H is a function of the mea-
surements and inputs (treatment). For the smoking cessation
example, the structure and the dimension of the measurement
vector Y, unknown vector 8, and matrix H in (4) are given
in Appendix A.

There are several ways to estimate vector £. In the examples
provided in this paper, lasso [11] is used as an identification
tool. Assuming P is the number of the patients, N is the length
of the data from each patient, and » is the order of the system,
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Algorithm 1 Lasso Iterative Identification Algorithm

1: Given u, tolerance ¢, iteration j = 0,1,..., 5o = 0, and
randomly chosen 81 = Binitial > Initialization

2: while [3;11 — ;] < J do

3. 52 1Y —HBj+1ll3

IY—HB|l3
2né +

©[Q

4: B < argming ,,
subject to
s < p

Bj+1 < B

end while

o+ ¢ and § + B

a, v and ¢ < Parameters of set VV from statistic of vector

w,

this algorithm provides a way to determine an estimate of the
parameters that balances the size of the noise ¢ € N (0, o?)
and the sparsity of the exogenous perturbation w in the model.
Note that there is also a balance between the order of the
system and the size of the perturbation (magnitude, sparsity,
and so on). Sparsity of signal w is crucial in this context, as
it represents perturbations that a patient faces infrequently

. Y — HB|3
{f,0} = argmin 7” Allz + g
B.o,w 2no 2
st ol < u. ©)

The optimization problem in (5) is a convex minimization
of a penalized joint loss function with a regularization para-
meter u given for the regression coefficient, noise level, and
vector w, which is a finite dimensional signal.

The design matrix H and the response vector Y are
constructed from measurements from P different patients
(see Appendix A). Since the problem is jointly convex with
respect to f and o, if the initial estimate of f is known
or given, then o, which minimizes the objective function,
can be calculated by differentiating the objective function (5)
with constant S vector (step 3 in Algorithm 1). Then, the
optimization problem in step 4 in Algorithm 1 is solved to
estimate vector f3.

The following lasso algorithm shows the identification pro-
cedure in [11], where j shows the iteration number.

The terms in the objective function (5) aim at finding the
maximum likelihood estimate of the parameters of the model
and the variance of the noise ¢ while the €| constraint searches
for a sparse exogenous input. Here, the £1-norm is used as a
convex approximation of the £p-norm [30]. Thus, given the
data and the order of the model n, at the end of the identifica-
tion algorithm, the parameters of the model in (2), the noise
levels of ¢ € N(0,0?), and unmeasurable exogenous input
w € RPN=1 are estimated. Then, the statistic of identified
vector w € RPW= i used to define signal set WV in (3).

In the smoking cessation example, since an uncertain model
is searched for all P individuals (patients), all observations
of su;;,na;; and se;; (i =1,2,...,P) are used to construct
the regression model (4). Again the mathematical details
of model (1) for smoking cessation example are defined
in Appendix A.

STEP -2

STEP-1 STEP-3

Design Sequence of

Control That Gives Apply First Step of
Best Worst-Case N
Control to the Patient
Outcome Over Future

Collect Current
Patient States
v, 2)

Scenarios

Fig. 1. Adaptive intervention algorithm.

Finally, given a time interval of length K, output vector y
is a function of uncertainties w € £®, ¢ € N(0,0?), and
the state of the system. As mentioned earlier, w is a bounded
sparse uncertainty and ¢ is Gaussian noise that models dif-
ferences between different subjects. Now, to be able to design
robust controllers, we need to have a bounded support set for €.

Remark 2: Since Gaussian distributions have unbounded
support, we choose a set of high probability. More precisely,
given a window of size K, the density of ep.xyx—1 has
hyperspherical contours and we take a set of high probability
of the form

lekk+x—1ll2 < p (6)

where p is chosen based on the identified standard deviation
of the noise. This has the added advantage of leading to a
formulation of the robust treatment design that is computation-
ally tractable. We refer the reader to [31] for a more detailed
discussion of the advantages of using this approach to describe
this type of noise.

IV. ROBUST MODEL PREDICTIVE CONTROLLER

The method for controller design used in this paper is
based on MPC [16]. Here, the usual approach in robust
MPC is taken: one estimates the present value of the
state variable and determines the value of the control
variables over the horizon that minimizes a given objective
function. The first of these control signals is applied, and
the process is then repeated. The control algorithm is
summarized in Fig. 1. In step 1, initial conditions or the
information yx_1 .. .yr—, that the control algorithm will use is
collected. In the smoking cessation study, this information is
SUg_7...SUg_p, NAg_j...NAk_p, S€k_;...S€x_p. In addition,
after consultation with a practitioner in the field, the total
treatment to be given to the patient is limited to an allowable
set [32]-[34]. Such limitations might require the knowledge
of how much treatment was given in the recent past. As a
result, recent control input information Tyx_; ... Ty—_; (I > n)
is used in order to enforce the constraints on the total
treatment provided.

Consistent with the usual MPC approach, in step 2, one
minimizes a given cost function subject to constraints on the
total applied control in a certain range. Then, in step 3, the
result of the control algorithm is applied to the patient. Thus, in
this section, a decision rule is developed that dictates whether
treatment is applied to each individual at each time point under
the uncertainties.

The difference equation (1) is used to determine a
closed-form objective function for MPC formulation with
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a given receding horizon K. In the objective function,
we represent Vi1 € RX™ ag

Ver1 = Ay + AV + BTy + Déi + Ewy (7

where )y € R is the vector containing the state of the
model. 'i‘k e RE+"=1 i5 the treatment. W € RX is sparse
disturbance and & € RX is noise. Ay, A, B, D, and E
are matrices, which are calculated recursively from difference
equation (1)

Yk Yik—n Ty—n
Yi+1 Yk+1-n Tit1-n
Vir1 = . , o= . , T = .
| Yi+K -1 Vi1 Ti+x—2
[ Wi Ek—1
_ Wi _ &k
Wi = , &k =
| Wk4+K—2 Ek+K—2

Then, in this paper, the objective function of the following
form is considered:

Vst =X Vir1 — )T

although more complex convex functions can be addressed
by the framework presented here. For the smoking cessation
example, since one minimizes smoking urge, matrix X is
defined to choose smoking urge measure in vector V41 as

X — 1, ifx;; =kk+mk+2m,....k+ (K —1)m
N 0, otherwise.

Given the tuning parameter § € R, approximation of desired
average level of smoking urge, we aim to solve the following
robust optimization problem at each step of the algorithm:

min max Ves1 — )X Vi1 —60)" ®)
TeT ||&ll2<p
\7Vk EWk
which is subject to the system dynamics described in (7).
We also define W from the set W as

Wi = {vector Wy € RX satisfies : ||Wk|loo < @,
Wil <7, lIwkllo = K/c}- )

The intersection of the norms in the set W, forms convex
polytopes. It should be noted that set W is a union of these
convex polytopes; this fact is explored later when solving
the robust optimization problem resulting from the MPC
formulation of the control problem.

Smoking Cessation Example: We now discuss the set 7 of
allowable treatments used for the smoking cessation example.
In this case

T=1T:T;e{0,1}fory=k,....,k+K —1 and

k+K—1

Z Tn < Ttotal

n=k—I

(10)

represent the fact that one can either apply or not apply
treatment at each time. In addition, the number of treatments
applied in the last K + / instances is constrained to be less
than or equal to Tip- This constraint in the number of
treatments is aimed at addressing the problem of treatment
burden [32]-[34], which is decreasing effectiveness as the
number of applied treatments increases. In this specific
example, treatment T is binary; but in reality, it can have a
different level and type of treatment.

One should note that the optimization problem described
earlier is complex. Therefore, a problem equivalent to the
original problem (8) is now presented that is suitable for
implementation in Theorem 1. Using the results in [17]-[19]
(provided in Appendix B for completeness), one can prove the
following result.

Theorem 1: Consider the following semidefinite problem:

min 7
7, TreT,A
subject to
T — Ap? 0 *
0 Al (DX)T| =0
(Af —0 + ADo + BTy + EWwp)X DX I
(11

for all Wy € Wex, Where Wex values are the extremes of the
polytopes whose union is W.

The optimum of the problem above is an upper bound on
the optimum of the original optimization problem (8) and is
equal if only one of the elements in the set Wex; leads to an
active constraint at the optimum.

In the LMI in (11), % is ((Af —0+ Ao+ BT + Ewg) X)T .

Proof: See Appendix C. O

We now characterize the set of extremes, Wext.

Theorem 2: Consider set Wy defined in (9), where a, 7y,
and ¢ define the bounds on the {so-norm, ¢{-norm, and
sparsity, respectively. Let n,,, = dim(Wwy)/¢.

1) If a > y, then Wex is the set of all signed permutations

of
[y 0---01.
K—1

2) If ny;o < 7y, then Wegx is the set of all signed

permutations of

[o---a 0---0].
—_—— —\—

Npz K—np;

3) If y < nyz0 < nyzy, then Wey is the set of all signed
permutations of

~—— S~——
ny K—ny—1

where

ny = LZJ and h =y —nya.
Proof: See Appendian. O
After finding the extreme points of the set W, a semidefi-
nite programming or mixed integer semidefinite programming
solver could be used to solve problem (11); but for a large
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receding horizon K, the number of extremes and, thus, the
number of LMI constraints might be fairly large.

Section V presents a simulated application of the algorithm
using a model that mimics data that might have been collected
in smoking cessation studies, such as [25].

V. SIMULATION RESULTS
A. Implementation

As an implementation of the adaptive treatment algorithm
that is proposed for an intervention using portable devices,
we consider individuals who wish to quit smoking, and we
present a hypothetical algorithm for treatment via a smart
phone. In addition, the quit day (i.e., day on which an
individual quits smoking) and the time immediately following
the quit day are extremely important on smoking cessation
interventions and in the prevention of relapse. The simulations
in this example address smoking dynamics after the quit day.

In the simulation, the participant provides information on
his/her level of smoking urge, negative affect, and self-efficacy
on the morning of day 1; the smart phone then provides
the behavioral treatment. Robust adaptive treatment begins at
midday after the participant again provides his/her level of
smoking urge, negative affect, and self-efficacy. Right now,
suo, nao, seo, T() and sul, nal, se1 are known, where T’
is treatment provided in the morning. The proposed adaptlve
treatment algorithm is run and decides T? Pl and set T), =
T? optimal That s, if T¢ °Pimal — | treatment is provided at
midday; otherwise, it is not. Afterward, new su3, _na3, se3 are
collected; then by using these new values and suj, na’, sez,
the process T2 is repeated to obtain Tg = T¢ optimal - Thjg
process is repeated throughout the entire course of treatment.

B. Identification Results

In order to test the performance of the approach presented in
this paper, we emulate a real application. We develop a second-
order (n = 2) model for smoking urge that approximates
the behavior observed in empirical studies, such as [25].
Note that, in this paper, subjects smoke heavily. Therefore,
the intervention is not expected to drive cravings to zero in
this short-term program. Moreover, during the initial phase of
treatment, the proposed algorithm aims to decrease smoking
urge of patients as much as possible, while simultaneously
reducing the amount of treatment. We aim to increase initial
impact of treatment.

Here is the true model of smoking urge

as 1.067 [dy 15 gs 527
ao .50 dy .01 g0 —.01
al .35 d1 0 81 0
by | =1 .01 |, e | =1 49 |, |ho|=1]—-.02
b1 0 el .25 h 0
co —.12 fo —.05 ro .49
_Cl_ _—.09_ _fl_ L 0 i _}”1_ B .36 i

The studies mentioned earlier do not contain treatment.
Hence, we augmented the model with a nonlinear effect
of treatment in order to represent treatment burden. In the
literature, the treatment burden is defined as increasing the

level of treatment to the extent that it may cause suboptimal
adherence and even negative outcomes. More information
about treatment burden in social and medical sciences can be
found in [32]-[34]. More precisely, the following terms were
introduced:

12)

u=k—2
q0Tk—1 + q15ig |: > Tui| Ti—2

u=k—44

u=k—2
50Tk—1 + s18ig [ Tu] Tr_»

where

Sigl) = T —omm

sig(x) represents the sigmoid function or special case of
logistic function. Then, the following parameter values are
introduced:

[go g1 so s1]l=[-2 2 2 —.2].

This model for the effect of treatment is designed to emulate
the case where the treatment has a positive impact, but its
effectiveness decreases when the treatment is applied too
frequently.

For this highly uncertain model, 500 different trajectories of
the system are generated, with random initial conditions and
random realizations of uncertainty. This is done to simulate
the behavior of 500 subjects in a study where the treatment
was provided at random times. Note that this is a reason-
able surrogate for a study, since the model is designed to
approximate real data, except for the influence of treatment.
The model identification algorithm described in Section III
is then applied, and a model to be used by the robust MPC
algorithm was obtained. To validate the model, we can use the
information in [26] and [27], showing that negative affect (na)
increases smoking urge (se), where the sign of the coefficient
of negative affect (na) is positive; self-efficacy (se) decreases
smoking urge (su), where the sign of the coefficient of self-
efficacy (se) is negative. These effects also can be seen in
Fig. 3 and Table II. Moreover, the dynamical equations of
negative affect and self-efficacy indicate that the effect of
treatment is very small. This results in small improvement in
smoking urge. However, this improvement is very important
for heavy smokers at the beginning of the treatment process.

To do this, a model of the form (2) is used with order n = 2.
The model coefficients obtained for a randomly chosen virtual
patient are

_df_ 13 ] _gf_ 52
_af_ [1.117] do .005 20 —.011
ap 47 di 0 g1 0
al .34 ) 5 ho —.02
b() = .01 . el | = 24 . h1 = 0
by 0 fo —.05 ro 49
co —.10 fi 0 r .35
Lc1 | | —08] q0 —0.207 S0 0.202
| 41 | L 0.15 1 | 51| _—().142_
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TABLE I

Improvement on Smoking Urge

985

INITIAL CONDITION OF STATES AND INPUT 0.6
su(0) | su(1) | se(0) [ se(1) | na(0) | na(l) | T(0) | T(1)
3521 | 0346 | 4428 | 4324 | -0354 | 1.082 0 . 25
=}
g 0.4
<
TABLE II £ 0.3
INTERVENTION PERFORMANCE OF SDP % 0.2
2 0.
<
Adaptive | No Robustness Full No <53 0.1
Treatment Treatment Treatment | Treatment ‘EI 0
Mean(su) 1.31 1.36 1.46 1.51 2
Mean(se) 3.8412 3.76 3.6424 3.4863 g -0.1
Mean(na) 0.3096 0.3662 0.4571 0.5698 X
Tsull2 22.55 2332 2443 25.15 g,70-2
SR=10Ty 43 34 150 0 “-0.3
-0.4
and the description of the uncertainty is, for robust MPC
window of K = 8, the following: Wi has 25% nonzero terms 20 40 60 80 100 120 140
with |[Wi|l1 <5 and ||Wi|loo < 2.5. In order to obtain these o
parameters, the statistic of the identified w in Section III  Fig. 2. Performance of adaptive intensive intervention.

is used. As for Gaussian uncertainty, &% ~ N0, 1.3),
"™ ~ N(0,0.78), and &% ~ N(0,0.55) are identified. The
sampling period here is 8 h and, hence, data are collected three
times per day. The simulation is run for 50 days, and 150 data
points are collected.

C. Experiments

We then applied the proposed controller in this paper to
a nonlinear model mentioned earlier, again with randomly
generated uncertainty/noise and the initial conditions given at
Table I. In other words, we simulate the application of our
robust MPC algorithm to a patient. The parameters used are
specified as follows.

1) MPC window size: K = 8.

2) Constraints in control: Ty € {0, 1} and

k+K—1
Tiotal = Z Tn < Trotal = 10/3-

n=k—3
In other words, one either applies or does not apply
treatment at each time point, and there is a constraint
of a maximum of approximately one treatment per three
sample times. Full treatment is defined as Ty = 1 for
all values of k.

3) Objective function to be minimized

k+K
> (su(p) —2.2)
n=k+1
where the target value 2.2 was chosen, so that one has
a significant decrease in the mean smoking value.
4) Bound on the two-norm of the Gaussian noise: p = 30.
5) Initial conditions of the states and input in Table I.

D. Simulations Results for a Patient

The optimization problem to be solved here is a mixed-
integer, semidefinite convex problem. There are many ways to
solve it, but in the simulations performed here, the requirement
T = T, € {0,1} is relaxed to 7 = T, € [0,1] to

use a general, semidefinite programming solver. The control
applied is

sz plied _ round(Ty).

The simulation was run for 150 time instances corre-
sponding to a real time interval of 50 days. CVX is used
with SeDuMi as the semidefinite programming solver to
problem (11) [35]. The developed control law systematically
improved smoking urge, since the treatment is only applied
when needed. At the same time, our control law increased
self-efficacy while reducing negative affect in order to reduce
smoking urge. Table II represents a typical example of the
results obtained.

Table II shows the performance of the adaptive treatment
design in terms of objective function, average values of
smoking urge, self-efficacy, negative affect, and total amount
of treatment that the adaptive intervention applied. Moreover,
to show the benefit of our robust adaptive intervention, the
simulation is also done where controller design did not
consider uncertainty (no robustness in Table II). Results
indicated that the robust adaptive intervention applies the
optimum amount of treatment to improve smoking urge,
self-efficacy, and negative affect. The improvement in
smoking urge is small, likely because this is a population of
heavy smokers [25]. However, this improvement is extremely
important at the beginning of the treatment process and leads
to significant benefit in long term period. Note that this
improvement was obtained with a minimized treatment effort.
Therefore, one can see that there is a significant improvement
in smoking urge not only in terms of the average but also in
the fact that a consistent decrease in urge is obtained. If the
treatment was more diverse than a binary signal [see the
treatment set 7 in (10)] (e.g., varying dosages), the controller
benefits from adaptation would be greater.

Fig. 2 shows decrease in smoking urge. In Fig. 2,
guFull Treatment guAdaptive Treatment ;¢ depicted, where
is smoking urge measured under the
yfull Treatment ;¢ smoking urge

SuAdaptlve Treatment

adaptive treatment and s
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Fig. 3. Smoking urge, negative affect, and self-efficacy under adaptive

intervention.
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Fig. 4. Sparse disturbance.

measured under the full treatment. Although the full
treatment performs better than the adaptive treatment in the
beginning of the treatment process, in the long term, the
adaptive treatment works better, because the algorithm applies
the treatment only when it is really needed, thus reducing
treatment burden.

As expected, the algorithm carefully chooses when to apply
treatment. It is mainly applied when external perturbations
lead to a significant increasing trend in smoking urge. Finally,
Fig. 3 shows the smoking urge, self-efficacy, and negative-
affect measure of a virtual patient under both full treatment
and adaptive intervention. Note that the responses shown
in Fig. 3 are reflective of long-time, post-quit behavior. While
important, this only represents a subset of the behavior stages
seen in smoking cessation. Asterisks in Fig. 3 indicate when
treatment is provided by the adaptive treatment algorithm.
Fig. 4 shows the exogenous sparse disturbance that is applied
to this particular patient for this simulation.

Remark 3: To be able to formulate the treatment design
problem (11) as a convex optimization problem, in the

Adaptive Treatment
T T T

120 T T
100 ..
80
60

40

Number of Patient

20

0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5

Full Treatment
T T

400 T

s
- T sehl-ge™
2 3007 |
£
S 200 1
o]
2
£
=
Z 100 b
0 .|I‘|||‘||‘| ‘ ‘ ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 5. Adaptive and full treatment intervention results.

simulations above, we replaced the constraint Ty € {0, 1} by
the relaxation Ty € [0, 1]. Then, the treatment applied was
round (Ty). To test the effectiveness of such relaxation, branch
and bound techniques were used to solve the optimization
problem under the true constraint Ty € {0, 1}. The results
obtained were similar and, hence, in this example, there is
no advantage in solving the more complex mixed integer
optimization problem.

E. SDP Results of a Population

Since some of the parameters are as random in the simu-
lation, the algorithm is run 400 times to estimate the average
improvement in smoking urge, self-efficacy, and negative
affect. The same parameters in Section V-C except that [ = 6
in (10) are used to run the algorithm. Moreover, for the random
parameters, the disturbances Wy are generated uniformly, such
that Wy € W;. The Gaussian disturbances are generated
under a normal distribution, such that &% ~ N(0,1.3),
e ~ AN(0,0.78), and & ~ AN(0,0.55). For the initial
conditions, sug € U(3.6,0), seg € U(4,0), and nag € U(2,0)
are generated. Fig. 5 shows average improvement in smoking
urge (SUNO Treatment __ ¢, Adaptive or Full Treatment), self-efficacy
(seAdaptive or Full Treatment __ geNo Treatment)’ and negative affect
(na
adaptive treatment increases self-efficacy while it decreases
smoking urge and negative affect, even with less treatment.
The average number of treatments provided is 54.6.

No Treatment __ naAdaptive or Full Treatment)_ It is shown that the

1) su™, se™, na™: Smoking urge, self-efficiency, and
negative affect without treatment.

2) suf, s g™ Smoking urge, self-efficiency, and
negative affect under full treatment.

3) suadaptive, s eadaptive, n aadaptive_. Smoking urge, self-
efficiency, and negative affect with adaptive treatment.

VI. CONCLUSION

Behavioral and social scientists have been considering the
advantages of adaptive treatments. Research has indicated that
adaptive treatment strategies might give better results than
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fixed treatment (i.e., all patients get the same type and level
of treatment) [12]. Since adaptive treatments usually provide
better results than the usual methods, in this paper, we argue
that control engineering methods, such as feedback or adapta-
tion and robust optimization, can provide a systematic way to
design a personalized treatment algorithm. Control engineer-
ing methods can be used to design personalized behavioral
interventions while reducing treatment burden. Existing theory
for adaptive treatment design is primarily qualitative and thus
does not provide precise guidance regarding how much of
which treatment treatment to provide to which individuals
at what times. With this adaptive intervention design algo-
rithm, treatments can be adapted and readapted in response
to individuals’ progress over a long period of time. These
methods hold promise for maintaining desired behavior in
situations where controlling behavior is challenging due to
complex dynamics. In terms of future work, effort is being
put into developing more efficient numerical algorithms for
solving the optimization problem for MPC. This will allow
for the consideration of a larger receding horizon and, hence,
better performance.

APPENDIX A
FORMULATION OF THE IDENTIFICATION PROBLEM

In this section, we show how general equation (4) can be
reorganized for the lasso algorithm. Start with the data set
(su, na, se) of P patients. Assume that for each ith patient,
we have collected data set su};, na};, se}; fork=1,2,...,N
and i = 1,2,...,P. Also assume that the order of the
model n is given. Then, for each patient i, build the matrices
in (13) and (14), shown at the bottom of this page.

Also, define

; ; . o7 ; B
i _ i i i i N—n
su' = [sul, sul,---suly] where su' € R
, . . - , N
i _ i i i i n
na' = [na,H_1 na, ,-- -naN] where na' € R

, . . .- . N
i _ i i i i n
se' = [sen+1 sen+2---seN] where se' € R
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where SU € RPWV-n) NA € RPV=1) and SE € RPN-n)

Xi1 X211
X1,2 X2,
X = ) Xy = .
X1p Xop
Finally, let
Ow=1afaoar -~ anby -+ bycocy - cnl
Ona=[drdody -~ aneoer - by fo fi - fu
qo q1 -+ gn ]
Oe =187 8 &1 -+~ @anhohy -~ byprory -+ ry
50 81+ Sn ]

ﬁ = [esu Ona  Ose w]T

where w is a w € RPWV=") dimensional vector. Then, if all

the patients satisfy the model provided in (2), we have
Y =Hp 15)

where Y € R3PW—n) g ¢ R3PWN=-m)x3CGn+D+N and coeffi-
cient vector g € RU1n+3+P(N-n))

SU X110]0|I
Y =|[NA H=] 0]|X2/0]0
SE 0]0|X2(0

and ¢ is a vector containing all noise.

APPENDIX B
THEOREM IN [17]-[19]

Theorem 3 [17]-[19]: Assume that the following problem
is defined:

¢(A,b,x) £ min max [|A(e)x — b(&)13. (16)

lell<p

Given Ao, ..., A, e R"™ by, ...,b, € R", and ¢ € R,
the following uncertainty structure can be defined:

and p p
A A
su na! se Ale) £ Ao+ D eiAi, ble)Ebo+ D &b (I7)
su2 na2 862 i=1 i=1
SU=| . NA= . SE=1| . Then, for p > 0, define
A
su” na” se” F(x) 2 [Aix — b1 ... Apx — bpl. (18)
r i i i i i i
I su, .. suj na;, na) se;, sej
i i i i i i
L osuy su; na, na; se€y, .1 se5
X1, = ) ) ) (13)
i i i i i i
L 1 suly_, suy_, Mnay_; nay_,  sey_,; sely_,
r i i i i i i i i
1 su, suj na, na) se;, sej T, . T
i i i i i i i i
I osu su,  nap na; S sej T, T,
Xa; = (14)
i i i i i i i i
L 1 suly_, suy_, nay_; nay_,  Sey_,; sey_, Tn_i - Ty_,
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The solution of the structured robust least square problem (16)
can be calculated by solving the following semidefinite
problem:

min 7
T,X,A
T — Ap? 0  (Agx —bo)T
s.t. 0 Al F(x)T >0. (19)
(Apx — bg) F(x) 1
APPENDIX C

PROOF OF THEOREM 1

Proof: We use the structure of V41 in (7) to analyze
the robustness of the optimization problem. Thus, Vi in the
objective function in (8) is replaced by Vi4+1 in (7) as

min max [|(As —6 4+ AV + BTy + Déi + Ewp) X|3.
TeT |&l2<p
Wi €W

(20)

Given objective function in (20), we can define vectors and
matrix in (17) as

Ao =B, A; =0, bo(Wp) = A; — 0 + Ao + Ewy
and b,‘ Z[);,,'.

Then, for fixed 'i‘k and wy, worst case residual is defined
by using the methods in [18, Sec. 4] as

rs(A, b, Ty, Wi)? = max | BTy — b(e, Wo)ll3
lEkll2<p

and from (18), define
M = FTF, g(Ty, W) = F" (BTy — bo)
(T, W) = || BTy — boll3.
Then, without loss of generality, assuming p = 1 yields
. 11"
re(A, b, Ty, Wi)? = max |: i|
lekll<1 | &
TG T owT

g(Tx, W) M

Given 7 > 0, using the S-procedure [18, Lemma 2.1],
(21) can be converted as

HT [h(?k,vm g(Tk,W} H -
el Lg(Te, W) M e]”

for every &, ele <1ifand only if there exists a scalar 1 > 0,
such that

1 T ‘[—/l—h(’i‘k,VNVk) _g(Tk,Wk)T 1
u [ —g(Tx, W) - M } u >0 (23)

(22)

for every & € R? and fixed T and wy.
Using the fact that A > 0 is implied by A/ > M, then the
above condition can be rewritten as

v — ) — h(Tk, W)

~ —ol(T = \T
f(r,z,Tk,vvk)ﬁ[ Bl 8 (T, W) }zo.
—g(Tk, Wi)

M—-M
Then, the wupper bound on the residual such
that rg (A,b,Tk,VNVk)Z <t can be obtained by solving the

following optimization problem [18, Th. 4.1]:

T :miﬂn T
T — ) — h(Ty, W) —g(Tk, wi)”
t. ~ >0 24
i [—g(Tk,vm a-m |70 Y

for all w; € Wk.

In addition, instead of checking all wy € W in LMI
constraint (24), one can use the result in [36], which states
that all the members of a polytope of matrices are positive
semidefinite if and only if all extremes of the polytope are
positive semidefinite. Furthermore, the set W is a union
of sets bounded by polytopes. Using the same reasoning as
in [36], it suffices for the LMI to be satisfied at the extremes
of each of the polytopes. Therefore, we need to check all
extremes of these polytopes. The LMI in (24) is satisfied in
the convex hull of these extremes. It is just a consequence of
the fact that an LMI is satisfied in a set of points; it is also
satisfied in the convex hull of these points. Then, we have the
following result:

*

¥ =min 7
7,
T — 4= h(Te, W) —g (T, wi)T
t. -~ 0 (25
: [ —g(Te, W) a-m |70

for all W € Wy and forfixed Ty, where Wex values are the
extremes of the polytopes whose union is Wg. Hence, 7* is
an upper bound on the robust performance for fixed Tj.

For the optimality, assume that there is only one extreme
W* € Wext, such that one of the eigenvalues of LMI in (25) is
equal to zero for some 7* and 1*, and LMI is positive definite
for the rest of the extremes. Then, if the t* is not optimum,
we can perturb * or decrease it for this specific W* € Wext
while keeping the LMI still positive definite for the rest of
the extreme points. This contradicts the assumption that *
is optimum. As a result, this optimization problem gives the
optimum 7 * if only one of the extremes is an active constraint.

Thus, for every fixed Ty and for all Wy € Wey, the results
in [18, Th. 4.2] or Theorem 3 can be used to convert problem
(25) to (26) for ellipsoid uncertainty ||gx|l2 < p and Wi € Wk.
Finally, problem in (25) is modified as follows:

min 7
T,TkET,l
S.t.
T — Ap? 0 *
0 Al (DX)T >0

(Af — 0+ AVy + BTk +Dé+Wi)X DX I
(26)

for all Wy € Wexe where again Wex values are the extremes
of the polytopes, whose union is Wg. _
In this LML,  is (A — 60 + AV + BTy + Ewp)X)T. O

APPENDIX D
PROOF OF THEOREM 2

The first two cases (@ > y and n,,a < y) are immediate,
since they correspond to the cases where either €1 or £, is the
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only binding constraints. Hence, in this proof, we concentrate
on the third case (y < ny0 < npzy).

Note that, given the symmetry of the problem, we can
concentrate on the subset of the elements of W, that are
positive and satisfy

wWir1 <w; foralli =k:k+ K — 1, and w; € Wg.

All other extremes will be obtained from this by permutations
and sign changes of the entries. Recall that, in this case,
we are considering

Y < NpzG < Nypzy

and the elements of vector Wy are in a nonincreasing order.
Therefore, the extreme of the set is given by pushing as many
of the first few elements as possible to their maximum value.
Given that |Wi|leoc < a and ||Wg|[; < y, one can only have

the first
=[Z]
ny = | —
o

elements of vector wi equal to . To reach the extreme and
recalling that the entries of the vector w are in a nonincreasing
order, the (ny + 1)th element of the vector must be at its
maximum value. Given that |W|[; < y and the first N, terms
are equal to a

Wpo4+1 =y —nyo.

Hence, for vectors with entries in a decreasing order, the
extreme of the set is attained by a vector of the form

[o--a h 0---0].
—_—— ~——

ny K—ny—1
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