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Assessing Time-Varying Causal Effect Moderation in
Mobile Health

Audrey Boruvka1, Daniel Almirall2, Katie Witkiewitz3, and Susan A. Murphy1,2

1Department of Statistics, University of Michigan
2Institute for Social Research, University of Michigan
3Department of Psychology, University of New Mexico

Abstract

In mobile health interventions aimed at behavior change and maintenance, treatments
are provided in real time to manage current or impending high risk situations or promote
healthy behaviors in near real time. Currently there is great scientific interest in
developing data analysis approaches to guide the development of mobile interventions.
In particular data from mobile health studies might be used to examine effect moderators—
individual characteristics, time-varying context or past treatment response that moderate
the effect of current treatment on a subsequent response. This paper introduces a
formal definition for moderated effects in terms of potential outcomes, a definition
that is particularly suited to mobile interventions, where treatment occasions are
numerous, individuals are not always available for treatment, and potential moderators
might be influenced by past treatment. Methods for estimating moderated effects are
developed and compared. The proposed approach is illustrated using BASICS-Mobile, a
smartphone-based intervention designed to curb heavy drinking and smoking among
college students.

Keywords: mHealth, structural nested mean model, effect modification
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1 Introduction

Mobile health (mHealth) broadly refers to the practice of healthcare using mobile devices,

such as smartphones and wearable sensors both to deliver treatment as well as to sense the

current context of the individual. In mobile interventions for behavior maintenance or change,

treatments are typically designed to help individuals manage high risk situations or promote

healthy behaviors. Examples include medication reminders, motivational messages, physical

activity suggestions, cognitive exercises to help manage stress or other risky situations, and

prompts to facilitate activity in support networks.

There is intense interest in data analysis approaches to guide the development of mobile

interventions (Free et al. 2013; Muessig et al. 2013) and to test the dynamic behavioral

theories on which these interventions are based (Spring et al. 2013; Mohr et al. 2014). Micro-

randomized trials (MRTs; Klasnja et al. 2015; Liao et al. 2015; Dempsey et al. 2015) provide

data expressly for this purpose, with each participant in an MRT sequentially randomized

to treatment numerous times, at possibly 100s to 1000s of occasions. In both MRTs and

observational mHealth studies both treatment and measurement occur intensively over time.

Measurements on individual characteristics, context and response to treatments are collected

passively through sensors or actively by self-report.

One way in which these data may aid the design of a mobile intervention is through the

examination of effect moderation; that is, inference about which factors strengthen or weaken

the response to treatments. Consider, for example, an intervention for smoking cessation.

Mindfulness-based treatments to help individuals manage their urge to smoke are presumably

best delivered at times when there exists an inclination to smoke (e.g. Witkiewitz et al. 2014).

However other factors might influence the effect of these treatments on subsequent smoking

rate. For example it may be that the mindfulness-based approach reduces smoking only

when stress levels or self-regulatory demands are low, and has little to no effect otherwise. In
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general knowledge about moderators can be used to deliver treatments only in settings where

they have proven most efficacious or to identify alternative treatment strategies when the

treatment shows little to no benefit. Treatment effects might also evolve over the course of

the intervention, so functions of time could also be examined as possible moderators.

This paper provides two main contributions in the assessment of treatment effects from

longitudinal data in which treatment, response, and potential moderators are time-varying.

The first is a definition for treatment effects that is particularly suited for mHealth, where

treatment occasions are numerous and potential moderators might be influenced by past

treatment. These effects are a marginal generalization of the treatment “blips” in the structural

nested mean model (SNMM; Robins 1989, 1994, 1997); the effects are conditional on a few

select variables representing potential moderators of interest as opposed to requiring that the

effects be conditional on all past observed variables. The second contribution is a centered

and weighted least squares method for estimating these treatment effects.

The most common estimation methods used in the analysis of mobile health data are

generalized estimating equation (GEE) approaches or related approaches that employ random

effects (Schafer 2006; Schwartz and Stone 2007; Bolger and Laurenceau 2013); these methods

are frequently used to better understand the time-varying relationship between two variables

such as craving and stress. Unfortunately, when the mobile health data includes time-varying

treatment, these methods are not guaranteed to consistently estimate causal treatment effects.

In this paper, we provide a centered and weighted least squares estimation method that

provides unbiased estimation.

We begin by defining treatment effects in our setting. The centered and weighted

estimation method is derived and its properties are assessed numerically using a variety of

simulation scenarios. As an illustration, we apply the proposed method to data from a study

of BASICS-Mobile, a mobile intervention to curb heavy drinking and smoking among college

students (Witkiewitz et al. 2014).
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2 Proximal and Other Lagged Treatment Effects

2.1 Motivating Example

Our motivating example is drawn from BASICS-Mobile, a smartphone-based intervention

designed to reduce heavy drinking and smoking among college students. Users are prompted

three times per day (morning, afternoon and evening) to complete a self-report assessing a

variety of individual and contextual factors including episodes of drinking or smoking, social

settings, affect, and need to self-regulate thoughts. The afternoon and evening self-reports are

possibly followed by a treatment module of three to four screens of information and at least

one question to confirm that the module was received. Some of the treatment modules address

smoking and heavy drinking using mindfulness messages (Bowen and Marlatt 2009). Other

modules provide general (primarily health-related) information (Dimeff 1999). In an analysis

of data arising from the implementation of BASICS-Mobile, it is natural to estimate the

effect of providing the mindfulness messages (versus providing general health information) on

a proximal response, such as the smoking rate between the current and following self-report,

and to assess whether or not these effects differ according to the individual’s context.

2.2 Notation and Data

For a given individual, let At denote the treatment at the tth treatment occasion and

Yt+1 be the subsequent proximal response (t = 1, . . . , T ). Throughout we limit attention

to the case where each At is binary and Yt+1 is continuous. Individual and contextual

information at the tth treatment occasion is represented by Xt, which may contain summaries

of previous measurements of context, treatment or response. For example, prior to each

treatment occasion the individual might report their current mood. The vector Xt could

then contain this measurement or, with previous measurements, variation or change in

mood. Over the course of T treatment occasions, the resulting data from an individual
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. . .

Morning

At−1

t− 1
Afternoon

At

t
Evening Morning

. . .

Xt−1 Yt, Xt Yt+1

Figure 1: A BASICS-Mobile participant’s data for two treatment occasions leading up to
Yt+1, depicted in chronological order. Information is primarily collected via self-reports three
times per day—morning, afternoon and evening. Treatment occasions take place after the
afternoon and evening self-reports.

ordered in time is (X1, A1, Y2, . . . , XT , AT , YT+1). The overbar is used to denote a sequence

of random variables or realized values through a specific treatment occasion; for example

Āt = (A1, . . . , At). Information accrued up to treatment occasion t is represented by the

history Ht = (X̄t, Ȳt, Āt−1). Throughout we represent random variables or vectors with

uppercase letters; lowercase letters denote their realized values.

In BASICS-Mobile (Fig. 1), At = 1 if a mindfulness message is provided at the tth

treatment occasion and At = 0 otherwise, Yt+1 is the smoking rate between the occasion t

self-report prompt and the following self-report prompt, T = 28, and Xt includes the time of

day, number of reports recently completed, prior smoking rate, current need to self-regulate,

and other summary variables formed from the reports up to and including the tth occasion.

For example, from the self-reports at t− 1 and t, we can examine the change in self-regulation

needs and determine whether there was an increased need (incrt = 1) or not (incrt = 0).

In the following Section, we define the causal effects of interest in terms of the potential

outcomes. Then we express the causal effects in terms of the observed data and provide

causal assumptions sufficient for these expressions.
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2.3 Moderated Treatment Effects

To define treatment effects below, we adopt potential outcomes (Rubin 1974; Neyman

1990; Robins 1989) notation. However we will deviate slightly from this framework be-

cause, as will be seen below in (2), our estimands may involve the treatment distribution

in the data. In particular it will be useful to include in the set of potential outcomes,

treatments expressed as potential outcomes of past treatment. That is, the potential out-

comes are {Y2(a1), X2(a1), A2(a1)}a1∈{0,1}, . . . , {YT (āT−1), XT (āT−1), AT (āT−1)}āT−1∈{0,1}T−1 ,

{YT+1(āT )}āT∈{0,1}T . In BASICS-Mobile, for example, the smoking rate measured following

the second treatment occasion has four potential outcomes: Y3(0, 0), Y3(0, 1), Y3(1, 0), Y3(1, 1).

Here Y3(0, 0) is the smoking rate that would arise for a given individual had that individual

received no mindfulness treatments over the first two treatment occasions: a1 = a2 = 0. This

idea can be similarly applied to the measurements Xt, since they might also be influenced by

past treatment; Xt+1(āt) are the potential measurements had the sequence of treatments āt

been allocated. For brevity, we denote A2(A1) by A2 and so on with At(Āt−1) denoted by At.

Then Ht(Āt−1) = (X1, A1, Y2(A1), X2(A1), A2, Y3(Ā2), X3(Ā2), A3, . . . , Yt(Āt−1), Xt(Āt−1)).

Many treatments are designed to influence an individual in the short term or proximally

in time (Heron and Smyth 2010). For example, instruction in the mindfulness intervention

used in BASICS-Mobile, called urge surfing, aims to help the individual to “ride out” urges,

by recognizing the urge as it arises and allowing the urge to pass on its own. Questions

related to these effects concern the proximal effect of treatment on the response defined by

E
[
Yt+1(Āt−1, 1)− Yt+1(Āt−1, 0) | S1t(Āt−1)

]
, (1)

where S1t(Āt−1) is a vector of summary variables chosen from Ht(Āt−1). The difference in (1)

represents the effect of At = 1 versus At = 0 on the response at t + 1, given S1t(Āt−1). In

conditioning only on S1t(Āt−1) as opposed to Ht(Āt−1), the effect (1) is marginalized over
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variables in Ht(Āt−1) that are not in S1t(Āt−1). Different choices of variables in S1t address a

variety of scientific questions, each of which is useful for understanding the effect of At = 1

versus At = 0 on the response Yt+1. For example, a first analysis may focus on the proximal

effect that is marginal over all variables in Ht(Āt−1) (i.e., S1t = ∅), whereas a second analysis

may focus on assessing this effect conditional on particular variables from Ht(Āt−1).

Note that, for any Au not contained in S1t(Āt−1), the expectation in (1) depends on

distribution of Au. This is a departure from the causal inference literature, where estimands

do not depend on the treatment distribution in the data at hand. Nonetheless, for all choices

of variables in S1t(Āt−1), the proximal treatment effect is causal, since (1) is the conditional

mean of the contrast between the potential proximal response had an individual received

(at = 1) versus not received (at = 0) treatment at occasion t. Considering the dependence of

the proximal effect on the distribution of the treatments, it is best to always present this

distribution along with the estimated treatment effect. For further discussion concerning

including the treatment distribution as part of the estimand, see Section 8.

Many treatments may have delayed effects. For example, mindfulness messages have a

delayed effect when individuals recall and employ mindfulness exercises provided prior to

the most recent treatment occasion. In BASICS-Mobile, treatments suggesting alternative

activities to smoking and drinking may achieve little to no immediate impact in the afternoon,

but the individual might follow these suggestions later on in the evening. So in general

both proximal and other lagged effects of treatments on the response variable may be of

interest. To define these lagged effects, we denote At+1(Āt−1, a) by Aat=at+1 , At+2(Āt−1, a, A
at=a
t+1 )

by Aat=at+2 and so on, with At+k−1(Āt−1, a, A
at
t+1, · · · , Aat=at+k−2) by Aat=at+k−1. We define the lag k

effect of treatment on the response k treatment occasions into the future Yt+k by

E
[
Yt+k(Āt−1, 1, A

at=1
t+1 , . . . , A

at=1
t+k−1)− Yt+k(Āt−1, 0, A

at=0
t+1 , . . . , A

at=0
t+k−1)

∣∣∣Skt(Āt−1)
]
, (2)
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where k ranges from 1 up to the number of lags of scientific interest. So the proximal effect

(1) corresponds to the lag k = 1 treatment effect. Note that both future actions, as well as

Yt+k, depend on treatment at occasion t as emphasized by the superscripts at = 1 or at = 0.

As with (1), Skt(Āt−1) is a vector of variables from the history Ht(Āt−1). Skt is indexed by k

to allow for the possibility that scientists may be interested in assessing effect moderation by

different variables depending on the lag k. For example, current busyness might be expected

to moderate the proximal (k = 1) effect of treatment, whereas expected busyness over the

remaining day might be expected to moderate more delayed (k > 1) effects. The lagged effect

is also similarly averaged over the conditional distribution of variables in the history Ht(Āt−1)

not represented in Skt(Āt−1), which might include past treatment or underlying moderators.

In addition, (2) is averaged over the distribution of treatments after occasion t but before

response Yt+k—namely Aat=at+1 , . . . , A
at=a
t+k−1 for either a = 1 or a = 0.

The causal effect in (2) is a generalization of the treatment “blip” in the SNMM. In

SNMMs, the tth treatment blip or intermediate effect on Yt+k is usually defined with

Skt(Āt−1) = Hkt(Āt−1) and with respect to a prespecified future (after time t) “reference”

treatment regime that defines the distribution for At+1, . . . , At+k−1. For example, if we were

studying treatment discontinuation, we might have chosen the reference regime Au = 0 for

u > t, with probability one (cf. Robins 1994, Section 3a). In this case the lag k treatment

effect (2) represents the impact of one last additional treatment on the proximal response k

time units later. The reference treatment regime reflected in (2), however, assigns treatment

with probabilities between zero and one and corresponds to the distribution of treatments in

the data we have at hand. For further discussion of the connection between the causal effects

defined here and the SNMM, see Supplement A.1.

To express the proximal and other lagged effects in terms of the observed data, we assume

positivity, consistency and sequential ignorability (Robins 1994, 1997):

• Consistency: The observed data (Y2, X2, A2, . . . , YT , XT , AT , YT+1) are equal to the poten-

8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

em
ph

is
 L

ib
ra

ri
es

] 
at

 1
1:

52
 0

9 
A

ug
us

t 2
01

7 



tial outcomes as follows: Y2 = Y2(A1), X2 = X2(A1), A2 = A2(A1) and for each subsequent

t ≤ T , Yt = Yt(Āt−1), Xt = Xt(Āt−1), At = At(Āt−1) and lastly YT+1 = YT+1(ĀT ).

• Positivity: If the joint density at {Ht = ht, At = at} is greater than zero, then Pr(At = at |

Ht = ht) > 0, almost everywhere.

• Sequential ignorability: For each t ≤ T , the potential outcomes {Yt+1(āt), Xt+1(āt),

At+1(āt), . . . , YT+1(āT )} are independent of At conditional on Ht.

The consistency assumption connects the potential outcomes with the data. When the

treatment allocated to one individual may influence the response of others, the observed

response Yt+1 is generally consistent not with the potential response Yt+1(Āt) as above,

but possibly with some other group-based conceptualization (e.g. Hong and Raudenbush

2006; Vanderweele et al. 2013). In particular, for a mobile intervention with a social media

component, it may be necessary to define the potential outcomes for a given individual as a

function of the treatments that are provided to individuals in their social network.

In an MRT, treatment is sequentially randomized according to known treatment prob-

abilities, say Pr(At = 1 | Ht) = pt(1 | Ht), t = 1, . . . , T , and thus sequential ignorability

is ensured by design. In an observational study, where treatment status is observed rather

than randomized, sequential ignorability is often assumed. Here the underlying treatment

probabilities pt(1 | Ht), t = 1, . . . , T , are unknown.

In Supplement A.2 we show that, under these assumptions, the lag k treatment effect can

be expressed in terms of the observed data as

E
[
Yt+k(Āt−1, 1, A

at=1
t+1 , . . . , A

at=1
t+k−1)− Yt+k(Āt−1, 0, A

at=0
t+1 , . . . , A

at=0
t+k−1)

∣∣Skt(Āt−1)
]

= E[E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht] | Skt]

= E

[
1(At = 1)Yt+k
pt(1 | Ht)

− 1(At = 0)Yt+k
1− pt(1 | Ht)

∣∣∣Skt], (3)
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for t = 1, . . . , T − k+ 1, respectively. Note that if Skt = Ht, then the lag k effect simplifies to

E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht]. (4)

3 Estimation

In the following we assume a linear model for the treatment effects. Fortunately, models

for the proximal and other lagged treatment effects can in fact be specified separately, since

(2) for differing lags k do not constrain one another (Robins 1994, 1997; see Supplement B).

Suppose that the following holds.

A1 Each lag k treatment effect of interest takes the form

E[E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht] | Skt] = fkt(Skt)
ᵀ
βk (5)

where fkt(s) is a p-dimensional vector function of s and time t.

Note that (5) does not imply that the lag-k effect is the same over time; indeed, the vector

fkt(Skt) may include a vector of basis functions in time, for example, for modeling time-

varying effects. When Skt 6= Ht, (5) is a marginal model. For example, if Skt = ∅, then

(5) is E[E[Yt+k | At = 1, Ht]− E[Yt+k | At = 0, Ht]] = f ᵀ

ktβk, which is a model for the lag k

treatment effects indexed by t but marginal over Ht.

The rest of this paper is devoted to inference on the unknown p-dimensional βk. Through-

out we denote the true value of βk by β∗k , n represents the number of individuals in the data

and Pn h(Z) =
∑n

i=1 h(Zi)/n for some function h of the random vector Z. Assume the data

comes from an MRT; in this case sequential ignorability is satisfied. In particular we assume:

A2 Treatment is sequentially randomized with randomization probability Pr(At = 1 | Ht) =

pt(1 | Ht), for each t = 1, . . . , T .
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Inference concerning βk using data from observational studies in which the treatment is

not sequentially randomized can be handled—if the assumption of sequential ignorability

holds—by estimating the treatment probability; see Supplement C.

The following, simple, estimation method includes centering of the treatment indicators

and weighting of the estimating function. The weights allow us to estimate marginal treatment

effects, e.g. conditional on Skt instead of Ht. As discussed above this commonly occurs, for

example, when interest lies in the treatment effect of At for Skt = ∅. The weights are ratios

of probabilities, with the denominator weight equal to the randomization probability; the

numerator probability is arbitrary as long as this probability depends on Ht only via Skt (the

variables in the treatment effect model, (5)). Denote the numerator probabilities by, p̃t(a|Skt)

for t = 1, . . . , T . The weight at occasion t is Wt = p̃t(At|Skt)
pt(At|Ht)

.

The centering produces orthogonality between estimation of the βk parameter in the

treatment effect, fkt(Skt)ᵀβk and estimation of the parameters in a nuisance function. That

is, the method below will provide a consistent estimator of the lag k effect even when the

nuisance function E[WtYt+k | Ht] is misspecified. This robustness property is desirable for

two reasons. First, the history Ht is usually high dimensional, making it very difficult to

model these nuisance functions correctly. Second, even when Ht is not very large, it can be

difficult or impossible to specify models that can be correct for both the nuisance function as

well as for the delayed treatment effects at lags j > k (see Supplement B for an example).

Below we provide results when the working model for E[WtYt+k | Ht] is gkt(Ht)
ᵀαk where

gkt(Ht) is a vector of features constructed from Ht and the vector αk is unknown.

The centered and weighted least squares estimating function is

UW(αk, βk) =
T−k+1∑
t=1

(
Yt+k − gkt(Ht)

ᵀ
αk − (At − p̃t(1 | Skt))fkt(Skt)ᵀ

βk
)

11
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Wt

 gkt(Ht)

(At − p̃t(1 | Skt))fkt(Skt)

, (6)
where as before, Wt = p̃t(At|Skt)

pt(At|Ht)
. Let U̇W be the derivative of UW with respect to the row

vector (αᵀ

k, β
ᵀ

k). In Supplement C we prove a more general version of the following result.

Proposition 3.1. Assume A1 and A2, both defined above. Then, under invertibility and

moment conditions, the solution to the estimating equation Pn UW(αk, βk) = 0 yields an

estimator (α̂k, β̂k) for which
√
n(β̂k − β∗k) is asymptotically normal with mean zero and

variance-covariance matrix consistently estimated by the lower block diagonal (p× p) entry of

the matrix (Pn U̇W(α̂k, β̂k))
−1 Pn UW(α̂k, β̂k)

⊗2(Pn U̇W(α̂k, β̂k))
−1

ᵀ

.

Remarks

1. A first look at the estimating function, (6), might lead one to think that the estimating

function is unbiased only if E[Yt+k | At, Ht] = gkt(Ht)
ᵀαk + (At − p̃t(1 | Skt))fkt(Skt)ᵀβk

for some (αk, βk); however this is not the case. Indeed, the primary assumption A1 only

concerns a marginal quantity derived from E[Yt+k | At, Ht]. Furthermore, the working

model gkt(Ht)
ᵀαk for E[WtYt+k | Ht] need not be correct in order for β̂k to be consistent

and for the large sample results to hold (see the proof in Supplement C).

2. As mentioned above the choice of the numerator of the weight, p̃t is arbitrary as long

as p̃t depends at most on Skt. One approach to selecting p̃t is to recognize that p̃t

determines the estimand when the model for the treatment effect in 5 is misspecified.

See (14, 15) in Supplement C for the projection. In particular selecting p̃t to be constant

in t and Skt results in the usual L2-projection of underlying treatment effect.

3. It is interesting to note that if the randomization probabilities are constant, ρ, then

setting p̃t(1|Skt) = ρ, simplifies (6) to an unweighted regression with recoded treatment

indicators (At → At − ρ).
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4. The weight Wt is reminiscent of inverse probability of treatment weighting in causal

inference (Robins 1998). However, in addition to facilitating estimation of marginal

treatment effects, here weighting (and centering) is simply used to make the weighted

least squares estimator β̂k robust against the case in which the working model gkt(Ht)
ᵀαk

misspecifies E[WtYt+k | Ht]. Further, this similarity might lead one to use the numerator

of the weight to “stabilize” the weights (e.g. Section 6.1 of Robins et al. 2000); that is,

to select a p̃t to make Wt as close to 1 as possible. There are two caveats to this. First,

as mentioned in remark 2. above, the numerator probabilities determine the limit of

β̂k when the modeling assumption for the lag k treatment effect (5) is false and thus

might be selected with this alternative interpretation for the estimand in mind. Second,

bias can result if the numerator of the weight depends on variables that are not in Skt;

see the second simulation in Section 6.

5. Centering has been previously employed by Brumback et al. (2003) and Goetgeluk and

Vansteelandt (2008) for causal inference. For example Goetgeluk and Vansteelandt

(2008) center exposure variables by their overall mean to protect against unmeasured

baseline confounders. Brumback et al. (2003) center time-varying exposures by their

conditional mean given the history, as we do; they consider treatment effects under a

treatment discontinuation reference regime and limit attention to overall effects without

interaction terms. In contrast to these papers, our use of centering is similar to that

of Liao et al.’s (2015) and is solely to provide robustness to the working model for

E[WtYt+k | Ht]; centering is not used to adjust for confounding. In Liao et al. 2015 the

treatment probabilities are non-stochastic.

6. The similarity of (6) to generalized estimating equations (GEEs, Liang and Zeger

1986) might motivate the inclusion of a non-independence working correlation matrices

such as exchangeable or AR(1) in the estimating function so as to reduce variance

13
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of β̂k (e.g. Mancl and Leroux 1996). Similarly, an analyst might wish to use a non-

independence working correlation matrix in our setting for the same reason, but this

strategy will generally introduce bias. Such a result is unsurprising given the bias

that arises when non-independence working matrices are used in inverse probability of

treatment weighting literature (Vansteelandt 2007; Tchetgen Tchetgen et al. 2012) or in

GEEs where a time-varying response is modeled by time-varying covariates (Pepe and

Anderson 1994). The simulations in Table 3 in Section 6, and Table 7 in Supplement D

illustrate such bias.

4 Availability

Up to this point we have implicitly presumed that at every possible occasion t, the participant

is available to engage with the mobile intervention. Consideration of availability is critical

since it might be unreasonable, counter-productive or even unethical to always presume

availability. By experimental design, treatment will not be delivered to unavailable individuals.

For example in HeartSteps (Klasnja et al. 2015), smartphone notifications are used to deliver

suggestions to disrupt sedentary behavior. Here, the participant is considered unavailable

when driving a vehicle (because the notification may be distracting) or walking (as treatment

at this time is scientifically inappropriate). Detection of availability can be carried out

through sensors (as in the case of HeartSteps) or recent interaction with the mobile device.

BASICS-Mobile took the latter approach by presuming that participants were available to

receive a treatment only after they fully completed a self-report.

Assume that the measurements Xt just prior to the tth treatment occasion contain the

participant’s availability status, denoted by It, where It = 1 if the participant is available

to engage with the treatment at occasion t and It = 0 otherwise. To define the treatment

effects under limited availability, we use potential outcome notation. The potential outcome

14
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notation allows us to not only make explicit the dependence of Yt+1 on treatment āt but also

make explicit the dependence of It on āt−1. Furthermore, in contrast to Section 2.3, here the

potential outcomes are indexed by decision rules because treatment can only be provided

when a participant is available. The use of decision rules to index potential outcomes helps

make explicit that, by experimental design, treatment At is not delivered if the participant is

unavailable at the t treatment occasion. In particular define d(a, i) for a ∈ {0, 1}, i ∈ {0, 1}

by d(a, 0) = 0 and d(a, 1) = a (recall that here a = 0 means no treatment). Then for each

a1 ∈ {0, 1}, define D1(a1) = d(a1, I1). The potential proximal responses following treatment

occasion 1 are {Y2(D1(1)), Y2(D1(0))}. Note that if I1 = 0 then D1(1) = D1(0) = 0 and

thus {Y2(D1(1)), Y2(D1(0))} = {Y2(0), Y2(0)}. That is, the experimental design excludes

the possibility to observe Y2(1) if I1 = 0. Similarly, there are potential outcomes for

availability; this emphasizes the fact that previous exposure to treatment can influence

subsequent availability. In BASICS-Mobile, for example, repeated provision of treatment

might lead to lower engagement with the intervention, and therefore lower availability

for further delivery of the treatment. The potential availability indicators at t = 2 are

{I2(D1(1)), I2(D1(0))}. As with the proximal response, if I1 = 0 then D1(1) = D1(0) = 0

and thus {I2(D1(1)), I2(D1(0))} = {I2(0), I2(0)}.

The decision rules at t > 1 are defined iteratively, building on prior decision rules. For

each ā2 = (a1, a2) with a1, a2 ∈ {0, 1}, define D2(ā2) = d(a2, I2(D1(a1))) and D2(ā2) =

(D1(a1), D2(ā2)). A potential proximal response following occasion t = 2 and corresponding

to ā2 is Y3(D2(ā2)) and a potential availability indicator at t = 3 is I3(D2(ā2)). Similarly,

for each āt = (a1, . . . , at) ∈ {0, 1}t, define Dt(āt) = d(at, It(Dt−1(āt−1))) and Dt(āt) =

(D1(a1), . . . , Dt(āt)). For each āt = (a1, . . . , at) ∈ {0, 1}t, the potential proximal response is

Yt+1(Dt(āt)) and potential availability indicator is It+1(Dt(āt)) at occasion t+ 1.

We now incorporate availability into the definition of the proximal treatment effect; first

recall the notation from the end of Section 2.2; similarly denote A2(D1(A1)) by A2 and so on
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with At(Dt−1(Āt−1)) denoted by At. The proximal treatment effect is

E
[
Yt+1

(
Dt(Āt−1, 1)

)
− Yt+1

(
Dt(Āt−1, 0)

) ∣∣ It(Dt−1(Āt−1)
)

= 1, S1t

(
Dt−1(Āt−1)

)]
.

Unlike (1), this effect is defined for only individuals available for treatment at time t, that

is, It
(
Dt−1(Āt−1)

)
= 1. This subpopulation is not static; at a given treatment occasion t

only certain types of individuals might tend to be available and availability for any given

individual may change with t. Conditioning on availability is related to the concept of viable

or feasible dynamic treatment regimes (Wang et al. 2012; Robins 2004), in which one assesses

only the causal effect of treatments that can actually be provided.

To incorporate availability into the definition of the lagged effects, we use the shorthand

notation: denote At+1(Dt(Āt−1, a)) by Aat=at+1 , At+2(Dt+1(Āt−1, a), Aat=at+1 ) by Aat=at+2 , and so on,

with At+k−1(Dt+1(Āt−1, a), Aatt+1, · · · , Aat=at+k−2) by Aat=at+k−1. The lag k effect of treatment on the

response k treatment occasions into the future Yt+k is defined by

E
[
Yt+k

(
Dt(Āt−1, 1), Aat=1

t+1 , . . . , A
at=1
t+k−1

)
− Yt+k

(
Dt(Āt−1, 0), Aat=0

t+1 , . . . , A
at=0
t+k−1

) ∣∣Skt(Dt−1(Āt−1)
)]
.

Assuming consistency, positivity and sequential ignorability, the lag k treatment effect

under limited availability can be expressed in terms of the data as

E[E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht] | It = 1, Skt]

= E

[
1(At = 1)Yt+1

pt(1 | Ht)
− 1(At = 0)Yt+1

1− pt(1 | Ht)

∣∣∣ It = 1, Skt

]
,

where pt(1 | Ht) is now Pr(At = 1 | It = 1, Ht). Modeling and estimation proceeds following

the same approach as with the always-available setting. In particular for the lag k treatment
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effect, we assume the linear model

E[E[Yt+k | At = 1, It = 1, Ht]− E[Yt+k | At = 0, It = 1, Ht] | It = 1, Skt] = fkt(Skt)
ᵀ
βk, (7)

where, as before, fkt(Skt) is a vector of features involving Skt and time t. To form the

estimating function for βk, we replace Wt in (6) by the product ItWt. The working model

and the treatment probability models are conditional on It = 1. A more general version of

the resulting estimating equation is provided in display (12) of Supplement C. Proofs can be

found in Supplement C.

5 Implementation

The weighting and centering estimation method can be implemented using standard software

for GEEs, provided that we: (i) incorporate ItWt as “prior weights” and (ii) employ a

independence working correlation matrix. The standard errors provided in Proposition 3.1

directly correspond to the sandwich variance-covariance estimator provided by GEE software.

From existing work on GEEs, it is well understood that the sandwich estimator is non-

conservative in small samples. To address this, whenever n ≤ 50, we apply Mancl and

DeRouen’s (2001) small sample correction to the term Pn UW(α̂k, β̂k)
⊗2 in the estimator of the

variance; in particular we premultiply the (T − k + 1)× 1 vector of each person’s residuals in

UW by the inverse of the identity matrix minus the leverage for this person. Also, as in Liao

et al. (2015), we use critical values from a t distribution or a Hotelling’s T-squared distribution.

In particular if we wish to test the null hypothesis for a linear combination of βk—e.g., test

cᵀβk = 0 for a known p-dimensional vector c—then we use the critical value t−1
n−p−q(1− α0)

where, p is the dimension of βk, q is the dimension of αk and α0 is the significance level. More

generally, if we wish to conduct a p′-dimensional multivariate test of βk—e.g., test zᵀβk = 0
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for a known p× p′ matrix z—then the critical value is F−1
p′,n−q−p

(
(n−q−p′)(1−α0)

p′(n−q−1)

)
.

When either p̃t(1 | Skt) or pt(1 | Ht) is estimated, the sandwich variance-covariance

estimator must be adjusted to account for the additional sampling error (see Supplement C).

See Supplement E to obtain code that calculates standard errors using R (R Core Team

2015).

6 Simulation Study

Here, we evaluate the proposed centering and weighting method via simulation experiments.

The following, simple, generative model will allow us to illustrate the proposed method and

compare it with existing methods. Consider data arising from an MRT (so the randomization

probability pt(1|Ht) is known). The generative model for the response, Yt+1, is a linear model in

(At, St, At−1, St−1, At−2, AtSt, At−1St, At−2St−1), for St ∈ {−1, 1}. For convenience in reading

off the marginal effects, we write this model as Yt+1 = θ1(St−E[St | At−1, Ht−1]) + θ2(At−1−

pt−1(1 | Ht−1)) + (At − pt(1 | Ht))(β
∗
10 + β∗11St) + εt+1. Here the randomization probability

is given by pt(1 | Ht) = expit(η1At−1 + η2St), Pr(St = 1 | At−1, Ht−1) = expit(ξAt−1) (note

A0 = 0), and εt ∼ N(0, 1) with Corr(εu, εt) = 0.5|u−t|/2. Throughout, for simplicity, each

subject is available at every treatment occasion: It = 1 (t = 1, . . . , T ). In the simulation

scenarios below, we fix θ1 = 0.8 and β∗10 = −0.2 and we vary (θ2, β∗11, η1, η2, ξ).

The marginal proximal (lag k = 1) effect is given by E[E[Yt+1 | At = 1, Ht] − E[Yt+1 |

At = 0, Ht]] = β∗10 + β∗11 E[St]. Note that if β∗11 = 0 or E[St] = 0 (i.e., by setting ξ = 0), then

the marginal proximal treatment effect is constant in time and is given by β∗1 = β∗10 = −0.2.

Throughout, for simplicity, we consider scenarios with β∗11 = 0 or ξ = 0; however, as discussed

in Section 3, the method does not require treatment effects that are constant in time.

Here, we consider three simulation experiments. All three simulation experiments concern

estimation of the marginal proximal treatment effect β∗1 . Thus in all cases when the weighted
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and centered method is used, f1t(S1t) = (1) in the estimating function (6) (i.e., S1t = ∅). We

report average β̂1 point estimates, standard deviation and root mean squared error of β̂1,

and 95% confidence interval coverage probabilities for n = T = 30 across 1000 replicates.

Confidence intervals are based on standard errors that are corrected for the estimation of

weights and/or small samples (see Section 5). The tables below omit the average estimated

standard errors; these are provided in Supplement D and closely correspond to the standard

deviations of the point estimates. Supplement D also reports additional results for n = 30, 60

with T = 30, 50 (results were similar for different T values), and compares the proposed

method versus centering but not weighting (Wt = 1 for all t) in a fourth simulation experiment.

The first simulation experiment concerns the estimation of β∗1 when an important modera-

tor exists. This experiment illustrates that, when primary interest is in the marginal proximal

treatment effect, weighting and centering is preferable over GEE. In the data generative

model, we set θ2 = 0, η1 = −0.8, η2 = 0.8 and ξ = 0 (recall ξ = 0 implies that the true

marginal proximal treatment effect is β∗1 = −0.2). Different scenarios were devised by setting

β∗11 to one of 0.2, 0.5, 0.8, giving respectively a small, medium, or large degree of moderation

by St. Since η1 and η2 are nonzero, the treatment At is assigned with a probability depending

on both St and past treatment At−1, for each t.

In the weighted and centered analysis, we parameterize and estimate p̃t. In particular,

p̃t(a; ρ̂) = ρ̂a(1 − ρ̂)1−a where ρ̂ = Pn
∑T

t=1At/T . The weights are set to Wt = ρ̂At(1 −

ρ̂)1−At/pt(At | Ht) and the working model for E[WtYt+1 | Ht] is α10 + α11St (i.e., g1t(Ht) =

(1, St)
ᵀ). Thus the estimating function in (6) is given by

T∑
t=1

(
Yt+1 − (α10 + α11St)− (At − ρ̂)β1

)
Wt

(1, St)
ᵀ

At − ρ̂

.
A common alternative would be a GEE analysis with an independence working correlation

matrix. The GEE estimating function with an independence working correlation matrix
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(GEE-IND) is the above estimating function but with Wt = 1 for all t and At not centered. A

more likely alternate that would be used in the mobile health literature is a GEE with an non-

independence working correlation matrix (Schafer 2006); the resulting conditional mean model

is the same as when random effects are used (Schwartz and Stone 2007; Bolger and Laurenceau

2013). We also provide a comparison with this alternative, using an AR(1) correlation matrix

(GEE-AR(1)). Note that, to guarantee consistency in a GEE analysis, one would assume

that the analysis model is correct; since here the analysis model is Yt+1 ∼ α10 + α11St +Atβ1,

the corresponding assumption would be that E[Yt+1 | St, At] = α10 + α11St + Atβ1 for some

(α10, α11, β1). This assumption is false (no AtSt term). The weighting and centering method,

on the other hand, does not require a model for the conditional mean. For consistency,

the weighting and centering method only uses the assumption that E
[

E[Yt+1 | St, At =

1]− E[Yt+1 | St, At = 0]
]

= β1 for some β1.

Since the treatment effect term does not include St, the GEE conditional mean models are

misspecified. Furthermore since η2 = 0.8, the randomization probability pt(1 | Ht) depends

on the underlying moderator St. We therefore anticipate the β̂1 from the GEE methods

to be a biased estimator of the marginal treatment effect of β∗1 = −0.2 and we expect this

bias to increase proportional to β∗11. On the other hand, all of the requirements needed to

achieve consistency in the proposed method are satisfied; hence, the β̂1 from the weighted

and centered method should be unbiased, regardless of the value for β∗11. These conjectures

concerning bias are supported by Table 1. In addition, (i) for β∗11 = 0.5, 0.8 the RMSE for

GEE is greater than or equal to the RMSE for the proposed method; and (ii) for all β∗11 the

proposed method achieves nominal 95% coverage, whereas, the GEE methods generally do

not (an exception was for β∗11 = 0.2 with GEE-IND). For further results see Table 5 in the

Supplement.
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Table 1: Comparison of three estimators of the marginal proximal treatment effect, β̂1, when

an important moderator is omitted.

Weighted and Centered GEE-IND GEE-AR(1)

β∗11 Mean SD RMSE CP Mean SD RMSE CP Mean SD RMSE CP

0.2 –0.20 0.08 0.08 0.96 –0.17 0.07 0.07 0.94 –0.16 0.04 0.06 0.86

0.5 –0.20 0.08 0.08 0.95 –0.14 0.07 0.09 0.88 –0.13 0.05 0.09 0.70

0.8 –0.20 0.08 0.08 0.95 –0.10 0.07 0.12 0.78 –0.10 0.05 0.12 0.57

RMSE, root mean squared error and SD, standard deviation of β̂1; CP, 95% confidence interval

coverage probability for β∗1 = −0.2. Results are based on 1000 replicates with n = T = 30.

Boldface indicates whether Mean or CP are significantly different, at the 5% level, from −0.2

or 0.95, respectively. GEE-IND is the same as the proposed method but with Wt = 1 and no

centering. In GEE-AR(1) includes an AR(1) working correlation matrix.

The second and third simulation experiments focus on the proposed weighted and centered

estimator. The second experiment illustrates that the ability to stabilize the weights is limited,

since weighted least squares is prone to bias if the numerator of Wt depends on variables

that are not in Skt. In the data generative model, we set θ2 = −0.1, β∗11 = 0.5, η1 = −0.8,

η2 = 0.8 and ξ = 0. Thus as above, the randomization probability for At depends on both St

and past treatment At−1 (t = 1, . . . , T = 100). Here, since β∗11 = 0.5, St is a moderator of the

proximal effect of treatment and since θ2 = β∗1/2 = −0.1 there is a lag k = 2 treatment effect

of At−1 on Yt+1.

In the data analysis using (6), the weighted and centered method, the working model for

E[WtYt+1 | Ht] is again α10 + α11St; thus, g1t(Ht) = (1, St). As before we assume E
[

E[Yt+1 |

St, At = 1] − E[Yt+1 | St, At = 0]
]

= β1 for some β1 thus f1t(S1t) = 1. The denominator of

the weight Wt is the known randomization probability, pt(At | Ht). We consider two different

choices for p̃t (hence, two different choices for centering At and for the numerator ofWt): (i) A
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choice that is constant in t. Here, p̃t(a; ρ̂) = ρ̂a(1− ρ̂)1−a where p̃t(1; ρ̂) = ρ̂ = Pn
∑T

t=1At/T .

The weights are Wt(At, Ht) = ρ̂At(1 − ρ̂)1−At/pt(At | Ht); (ii) A choice that depends on

St. Here, instead, p̃t(1 | St; ρ̂) = expit(ρ̂0 + ρ̂1St), where ρ̂ = (ρ̂0, ρ̂1) is the solution to

Pn
∑

t exp(ρ0+ρ1St){expit(ρ0+ρ1St)(1−expit(ρ0+ρ1St))}−1(At−expit(ρ0+ρ1St))(1, St)
ᵀ = 0.

In (i) the probability in the numerator is constant for all Wt (t = 1, . . . , T = 30). In (ii) the

probability in the numerator depends on St yet interest is in a marginal proximal effect β1

(St is not a part of f1t(S1t)). Hence, we anticipate bias in β̂1 under (ii), but not (i). This is

indeed reflected in Table 2, with (ii) exhibiting bias and achieving a coverage probability of

89%. For further results see Table 6 in Supplement D.

Table 2: Weighted and centered estimator of the marginal proximal treatment effect, β̂1,

using two choices for p̃t.

p̃t Mean SD RMSE CP

Constant in t (i) –0.20 0.08 0.08 0.94

Depends on St (ii) –0.14 0.09 0.11 0.89

RMSE, root mean squared error and SD, standard deviation of β̂1; CP, 95% confidence interval

coverage probability for β∗1 = −0.2. Results are based on 1000 replicates with n = T = 30.

Boldface indicates whether Mean or CP are significantly different, at the 5% level, from −0.2

or 0.95, respectively.

The third simulation experiment illustrates that employing a non-independence working

correlation structure with the weighted and centered method can result in bias. In the

data generative model, we set θ2 = −0.1, β∗11 = 0, η1 = η2 = 0 and ξ = 0.1. There is

no moderation of the proximal effect, since β∗11 = 0. Unlike the above scenarios, here the

predictor St is influenced by At−1 (since ξ = 0.1), and because θ2 = β∗1/2 = −0.1, there is a

lag k = 2 treatment effect of At−1 on Yt+1. Treatment is randomized with fixed probability

pt(1 | Ht) = 0.5 for each t = 1, . . . , T = 30 since η1 = η2 = 0.
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In the data analysis using (6), the weighted and centered method, the working model

for E[WtYt+1 | Ht] is again α10 + α11St; thus, g1t(Ht) = (1, St). In both data analyses, we

correctly model E
[

E[Yt+1 | St, At = 1]− E[Yt+1 | St, At = 0]
]
by a constant, here denoted by

β1 thus f1t(S1t) = 1. We set p̃t(1) = 0.5 thus the weights are Wt = 1 for all t = 1, . . . , T = 30.

We compare the use of (i) the estimating function in (6), which corresponds to an independent

working correlation structure, versus (ii) using a working AR(1) correlation matrix assuming

a correlation of 0.5|u−t|/2 between times u and t. In the latter case, the estimating function is

T∑
t=1

 (1, St)
ᵀ

At − 0.5

 T∑
u=1

vtu
(
Yu+1 − (α10 + α11Su)− (Au − 0.5)β1

)
,

where vtu is the (t, u) entry of V −1, where the (t, u) entry in V is 0.5|u−t|/2. While AR(1)

might better represent the true correlation matrix than an independence correlation matrix,

we expect (ii) to induce bias as this marginal model includes time-varying covariates. Table 3

demonstrates this result, with (ii) exhibiting bias and achieving a coverage probability of

65%. Further results are provided in Table 7 in the Supplement.

Table 3: Weighted and centered estimator of the proximal effect, β̂1, with different working

correlation structures.

Working Correlation Mean SD RMSE CP

Independent (i) –0.20 0.07 0.07 0.96

AR(1) (ii) –0.13 0.06 0.09 0.66

RMSE, root mean squared error and SD, standard deviation of β̂1; CP, 95% confidence interval

coverage probability for β∗1 = −0.2. Results are based on 1000 replicates with n = T = 30.

Boldface indicates whether Mean or CP are significantly different, at the 5% level, from −0.2

or 0.95, respectively.
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7 Application

BASICS-Mobile is a pilot study, with n = 28, T = 28. The response Yt+1 is the smoking rate

from the tth occasion to the next self-report, and participants are presumed available only if

they completed the preceding self-report. So the availability It is the self-report completion

status just prior to t and the treatment decision Dt is 1 only if a mindfulness message is

provided at t. Otherwise, Dt = 0.

BASICS-Mobile was neither a sequentially randomized trial nor an observational study.

Treatment delivery at occasion t was based on a complex decision rule involving primarily

a self-reported measure that the user had an urge or inclination to smoke at the preceding

self-report (urget), an indicator for the first three treatment occasions (1(t < 4)), and a

combination of other variables. For illustrative purposes we provide an analysis acting as

though the study was observational and assuming sequential ignorability; we estimate (with

logistic regression) the treatment probabilities in the denominator of the weights, pt(1 | Ht),

based on (Yt, urget, 1(t < 4)) using

pt(1 | Ht; η̂) = expit(0.69 + 0.02Yt + 0.17urget − 0.28 1(t < 4) + 0.70urget 1(t < 4)).

We examine proximal (k = 1) and lag-2 (k = 2) treatment effects. For the proximal effect

analysis, we examine one candidate time-varying moderator S1t = incrt, which indicates

whether or not the user reported an increase in need to self-regulate thoughts over the

two self-reports preceding t. Thus in the estimating function (6) for the proximal effect

analysis, we set f1t(S1t) = (1, incrt)ᵀ. For the delayed effect analysis, we consider only the

marginal lag-2 effect; thus, f2t(S2t) = (1) in the estimating function (6). For both analyses,

we centered and estimated the numerator of the weights based on p̃t(a; ρ̂) = ρ̂a(1 − ρ̂)1−a

where ρ̂ = Pn
∑T

t=1 ItAt/Pn
∑T

t=1 It = 0.67. Hence, for both analyses, the weights were set

to Wt = ρ̂At(1− ρ̂)1−At/pt(At | Ht; η̂). In the working model for both analyses, a variety of
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predictors are incorporated in gkt(Ht) (k = 1, 2), including an intercept term, incrt, current

urge to smoke, Yt+1−k, time of day, the interaction between Yt+1−k and time of day, baseline

smoking severity, baseline drinking level, age and gender.

The data analysis leads to several conclusions. First, the mindfulness message achieved a

reduction in the average next-reported smoking rate, but only when the user was experiencing

either a stable or decreased need to self-regulate (95% CI −5.45 to −0.15 cigarettes per day;

see Table 4). Otherwise no proximal treatment effect is apparent. Second, there is no evidence

to support the presence of an overall lag-2 effect, with a 95% CI of −1.74 to 0.76 cigarettes

per day for the average reduction achieved by mindfulness treatment at the second-to-last

treatment occasion. Estimated standard errors (SEs) take into account sampling error in

estimated treatment probabilities (see (13) for the formula), and are corrected for small n

(see Section 5 for details on the correction).

Table 4: Proximal and lag-2 treatment effects estimated from BASICS-Mobile data.

Treatment effect Estimate SE 95% CI p-value

Proximal, increase in need to self-regulate −0.06 0.95 (−1.27, 1.16) 0.99

Proximal, no increase in need to self-regulate −2.80 1.29 (−5.45,−0.15) 0.04

Delayed −0.49 0.61 (−1.74, 0.76) 0.43

8 Discussion

In this paper we define treatment effects suited for mobile interventions that enable frequent

measurements and frequent delivery of treatments. As we discussed, the effect definition

as provided in (1) and (2) is atypical in the field of causal inference in that the underlying

mechanism for the assigned treatment is part of the definition of the causal effect. However,

this definition of the causal effects is consistent with the effects defined via most models
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for intensively collected longitudinal data (see Schafer 2006, Schwartz and Stone 2007 and,

more recently, Bolger and Laurenceau 2013). Commonly the model for the conditional mean

of a time-varying response given time-varying covariates is a linear model (possibly with

the use of covariates defined by flexible basis functions). If treatment indicators as well

as interactions between the treatment indicators and time varying covariates are included

in the linear model then the meaning of coefficients of these covariates coincide with the

moderated proximal effect defined here. However estimation of these casual coefficients using

most common approaches (Schafer 2006; Schwartz and Stone 2007; Bolger and Laurenceau

2013), that is, either GEE approaches or approaches that employ random effects, can cause

bias. Indeed the large sample and simulation results provided here show that straightforward

use of GEEs (without weighting) is not guaranteed to consistently estimate β∗k .

Since the conditional mean functions for models with random intercepts or random

coefficients (e.g. Goldstein 2011) are the same as those in GEEs, we expect that likelihood

based methods which use the induced correlation structure in the estimation will generally

be biased. This connection is important given the fact that, in the analysis of intensive

longitudinal data, there is a preference for including random effects and, when GEE models

are used, to use a non-independence working correlation structure (such as exchangeable,

Corr(Yu, Yt) = r (u 6= t), or AR(1), Corr(Yu, Yt) = r|u−t|) to improve precision (Schafer 2006,

p. 58). Indeed the large sample and simulation results provided here show that GEEs based on

a non-independence working covariance structure is not guaranteed to consistently estimate

β∗k . Future work is needed on whether or how to incorporate random effects in the estimation

of proximal and lagged treatment effects.

There are a number of other directions for future work. First, throughout we limited

attention to a continuous response and binary treatment decisions. The extension to the multi-

category treatment setting (e.g., At ∈ {1, 2, . . . , C}) is relatively straightforward involving,

for example, the selection of a referent category (say, category C) and the use of C − 1
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centered terms of the form 1(At = c)− p̃t(c|Skt) where c ∈ {1, 2, . . . , C − 1}. Note that here

scientists might select different candidate moderators depending on the contrast. Second, an

extension to the binary response setting is more difficult, potentially requiring an extension of

the multiplicative or log-linear structural nested mean model (Vansteelandt et al. 2014). Such

an extension will be non-trivial if one wants to preserve the ability to estimate treatment

effects that are only conditional on S1t as opposed to all of the past, Ht. Third, lagged

effects (k > 1) were defined similar to proximal effects (k = 1), but in future work one might

rather be interested in a lagged effect that quantifies the accumulation of past treatment.

Fourth, since small to moderate treatment effects may be difficult to detect, yet potential

response predictors that can be used in the working models to reduce error variance are

numerous, future work could consider penalized methods for the working model in order to

accommodate and select from the large number of predictors. Fifth, although the primary

motivation for this paper is to estimate proximal or lagged effects using data arising from

micro-randomized trials (Klasnja et al. 2015; Liao et al. 2015; Dempsey et al. 2015), work on

how to best generalize and combine the methods here with the current research in causal

inference for observational studies is needed. Lastly, here we considered analyses that are

similiar to longitudinal analyses; however, interesting alternative approaches might have

more of a “system dynamics” flavor and employ time-series modeling or Markovian process

modeling.
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