Implementation of Behavior Change
Techniques in Mobile Applications for
Physical Activity

Chih-Hsiang Yang, MEd, Jaclyn P. Maher, MS, David E. Conroy, PhD

Background: Mobile applications (apps) for physical activity are popular and hold promise for
promoting behavior change and reducing non-communicable disease risk. App marketing materials
describe a limited number of behavior change techniques (BCTs), but apps may include unmarketed
BCTs, which are important as well.

Purpose: To characterize the extent to which BCTs have been implemented in apps from a
systematic user inspection of apps.

Methods: Top-ranked physical activity apps (N=100) were identified in November 2013 and analyzed
in 2014. BCTs were coded using a contemporary taxonomy following a user inspection of apps.

Results: Users identified an average of 6.6 BCT's per app and most BCTs in the taxonomy were not
represented in any apps. The most common BCTs involved providing social support, information
about others’ approval, instructions on how to perform a behavior, demonstrations of the behavior,
and feedback on the behavior. A latent class analysis of BCT configurations revealed that apps
focused on providing support and feedback as well as support and education.

Conclusions: Contemporary physical activity apps have implemented a limited number of BCTs and
have favored BCT's with a modest evidence base over others with more established evidence of efficacy
(e.g., social media integration for providing social support versus active self-monitoring by users).
Social support is a ubiquitous feature of contemporary physical activity apps and differences between
apps lie primarily in whether the limited BCT's provide education or feedback about physical activity.
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Introduction

obile technology has captured the imagination
M of healthcare workers and patients as a prom-

ising vehicle for delivering health-related
interventions with potentially greater reach and lower
long-term cost than in-person interventions." More than
50% of American adults own smartphones and half of
those owners use their phone to search for health
information.” Approximately 50% of mobile subscribers
use a fitness application (app).”* Apps that increase
physical activity levels would be valuable because insuf-
ficient physical activity is the second-leading preventable
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cause of death in the U.S., with links to heightened risk
for major non-communicable diseases.”® Despite the
popularity of fitness apps, their efficacy for increasing
physical activity is largely unknown, in part because their
dynamic and evolving nature presents a challenge to the
slow pace of conventional evaluation methods.”

In the absence of high-quality evidence from RCTs,
clinicians or patients can benefit from an informed
review of app features to guide their selections of apps
to increase physical activity and prevent health problems.
Apps have previously been evaluated on the basis of their
theoretical content, potential for behavior change, and
consistency with evidence-based clinical practices.”"'
Understanding which behavior change techniques
(BCTs) are implemented can illuminate mechanisms by
which using an app might facilitate behavior change as
well as the types of patients for whom a given app
may work best. One recent study'” found that relatively
few BCTs were identified in the marketing materials of
fitness apps, and two types of apps—educational and
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motivational—were identified based on their BCT con-
figurations. That study was limited by its focus on app
descriptions in online marketing materials instead of
inspecting apps to determine which BCTs were actually
implemented. This study addresses this gap by auditing
BCTs identified from a user inspection of apps.

Methods

Top consumer-rated physical activity apps in the “health and
fitness” category of the Apple iTunes and Google Play market-
places (N=100) were identified and downloaded for evaluation on
November 22, 2013 (25 paid and 25 free apps from each market-
place) and analyzed in 2014. This set included apps from popular
developers such as Endomondo, MapMyFitness, Nike, Noom, and
Runtastic. Apps that appeared on both free and paid lists (n=8) or
were available for both operating systems (n=6) were evaluated
separately. All 100 apps were included in the apps for which online
descriptions were previously evaluated.'”

Trained coders (n=9) inspected each app and coded the
presence/absence of BCTs implemented therein using the BCT
taxonomy (v1)."” Dyads coded an average of 22 apps each. Cohen’s
K was estimated based on the first five apps coded by each dyad and
indicated moderate to substantial agreement (mean k=0.62;
range=0.57-0.66)."* Both members of each dyad coded the
remaining apps and resolved coding discrepancies via discussion.
The graduate student who trained coders independently coded
apps where disagreement about a technique existed and, in all
cases, agreed with the consensus code achieved from discussion.

Descriptive statistics were used to estimate the prevalence of
BCTs implemented in each app, and ¢ tests were calculated to test
for differences between free and paid apps. A latent class analysis
was conducted to identify different types of physical activity apps
based on the configuration of BCTs.

Results

Overall, 39 of 93 possible BCTs were observed in the
coded apps. Apps incorporated between one and 21
BCTs with an average of 6.6 in each app (SD=3.3,
median=6). Table 1 indicates that the most commonly
observed techniques involved providing social support,
information about others’ approval, instructions on how
to perform a behavior, demonstrations of the behavior,
and feedback on the behavior. The number of BCTs did
not differ significantly between free and paid apps
(t[98]=1.43, p=0.08, d=0.29).

A latent class analysis was conducted with techniques
that appeared in >10% of the inspected apps. Fit indices
from models with one to five latent classes suggested a
two-class solution (G [likelihood ratio]=959, Akaike
information criterion=1,033, Bayesian information
criterion=1,129). The two rightmost columns of
Table 1 present item-response probabilities from this
model. The first class comprised 48% of the apps and
represented apps that provided support and feedback.
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These apps were characterized by the presence of features
that provided (1) social support; (2) information about
others’ approval; and (3) feedback on behavior. The
second class comprised 52% of the inspected apps and
represented apps that provided support and education.
These apps were characterized by the presence of features
that provided (1) social support; (2) information about
others” approval; (3) demonstrations of the behavior; and
(4) instruction on how to perform the behavior.

Discussion

At present, BCTs have been only narrowly implemented in
physical activity apps and most BCT's in the taxonomy were
not observed in any apps. User inspection identified more
BCTs in apps than did a review of marketing materials,
although the rank ordering of BCTs from both sources was
similar."” Different coding systems were used in these
studies; thus, comparisons should be interpreted cautiously.

The most common BCTs in the apps involved social
support via online communities (e.g., Facebook, Twitter).
Social media integration is extremely common in weight-
loss apps.'™'” Some health problems, including obesity,
may be “socially contagious” but evidence supporting
online social networks as tools for promoting physical
activity is modest to date.'”'*""®

Unlike weight-management apps, self-monitoring was
a relatively rare BCT in physical activity apps.'”'® The
sophisticated sensing capabilities of mobile devices with
embedded accelerometers may contribute to this differ-
ence. Given the importance of self-monitoring for
changing physical activity, it may be wise to rely less
on passive monitoring via sensors in favor of active self-
monitoring via retrospection and self-reporting when
apps are intended to support behavior change.'” Other
techniques associated with increased physical activity
include education (providing instruction or information
about the general consequences of activity); action
planning; time management; and reinforcing effort
toward behavior.”’

Two types of apps emerged based on their BCT
configuration, and those classes roughly paralleled those
identified from an analysis of online descriptions of app
features.'” User inspection revealed the ubiquity of social
network integration across the two classes of apps, and
the emphasis on feedback for motivation (as compared to
techniques such as goal setting). These findings reinforce
the conclusion that all apps are not created equal, and
prospective users should consider their individual needs
when selecting an app to increase physical activity."”

This user inspection provided a snapshot of BCT
implementation in a sample of top-ranked physical
activity apps at the end of 2013, but with the rapidly



454 Yang et al / Am ] Prev Med 2015;48(4):452-455

Table 1. Prevalence and ltem-Response Probabilities of Behavior Change Techniques in Latent Classes of Physical Activity Apps

Item-response probabilities
Prevalence Class 1: Support and Class 2: Support and

Behavior change technique (%) feedback apps education apps
Social support (unspecified) 79 a7 .81
Information about others’ approval 64 .63 .65
Instruction on how to perform a behavior 49 .05 .90
Demonstration of the behavior a7 .01 .90
Feedback on behavior 42 .59 .26
Goal setting (behavior) 36 .20 51
Prompts/cues 85 24 .45
Graded tasks 33 22 44
Social reward 32 .20 43
Self-monitoring of behavior 29 51 .08
Social comparison 25 37 14
Self-monitoring of outcome(s) of behavior 22 41 .04
Non-specific reward 22 .16 27
Goal setting (outcome) 17 .29 .06
Review behavior goal(s) 17 14 .20
Action planning 15 14 .16
Material reward (behavior) 11 .08 14
Monitoring outcome(s) of behavior by others 10 .16 .04
without feedback

Note: Techniques appearing in less than 10% of the inspected apps included the following: discrepancy between current behavior and goal (8%);
monitoring of emotional consequences (8%); review outcome goal(s) (6%); biofeedback (6%); material incentive (behavior, 6%); feedback on outcome
(s) of behavior (5%); social support (practical, 5%); focus on past success (4%); credible source (3%); non-specific incentive (3%); reward (outcome; 3%);
information about health consequences (2%); information about emotional consequences (2%); reduce negative emotions (2%); social support
(emotional, 1%); behavioral practice/rehearsal (1%); social incentive (1%); incentive (outcome, 1%); behavior cost (1%); reward approximation (1%);
situation-specific reward (1%). The 54 remaining techniques in the behavior change taxonomy were not observed.

evolving nature of the mobile health space, results may
soon be outdated. Some BCTs idiosyncratic to mobile
apps may not have been represented in the BCT
taxonomy."” The prevalence of BCTs in apps does not
speak to the degree to which each is incorporated, the
usability of apps, or the efficacy of the apps for increasing
physical activity.

In conclusion, this study was the first to characterize
the prevalence of BCT implementation in physical
activity apps based on user inspection. This approach
revealed greater, but still limited, implementation of
BCTs than reported in the recent review of online
marketing materials. This information will be valuable
for scientists and developers working cooperatively in the
mobile health domain as well as physicians and other
practitioners who seek low-cost interventions to increase
their patients’ physical activity.
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