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This paper addresses the rapid pace of change in the technologies that support digital
interventions; the complexity of the health problems they aim to address; and the adaptation of
scientific methods to accommodate the volume, velocity, and variety of data and interventions
possible from these technologies. Information, communication, and computing technologies
are now part of every societal domain and support essentially every facet of human activity.
Ubiquitous computing, a vision articulated fewer than 30 years ago, has now arrived.
Simultaneously, there is a global crisis in health through the combination of lifestyle and age-
related chronic disease and multiple comorbidities. Computationally intensive health behavior
interventions may be one of the most powerful methods to reduce the consequences of this crisis,
but new methods are needed for health research and practice, and evidence is needed to support
their widespread use.

The challenges are many, including a reluctance to abandon timeworn theories and models of
health behavior—and health interventions more broadly—that emerged in an era of self-reported
data; medical models of prevention, diagnosis, and treatment; and scientific methods grounded in
sparse and expensive data. There are also many challenges inherent in demonstrating that newer
approaches are, indeed, effective. Potential solutions may be found in leveraging methods of
research that have been shown to be successful in other domains, particularly engineering. A more
“agile science” may be needed that streamlines the methods through which elements of health
interventions are shown to work or not, and to more rapidly deploy and iteratively improve those
that do. There is much to do to advance the issues discussed in this paper, and the papers in this
theme issue. It remains an open question whether interventions based in these new models and
methods are, in fact, equally if not more efficacious as what is available currently. Economic
analyses of these new approaches are needed because assumptions of net worth compared to other
approaches are just that, assumptions. Human-centered design research is needed to ensure that
users ultimately benefit. Finally, a translational research agenda will be needed, as the status quo
will likely be resistant to change.
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The Technologic Infrastructure for Health Is
Changing

igital technologies are increasingly pervasive in

all aspects of daily life and the ease with which

digital tools are adopted is in part because of the
malleability and adaptability of digital technologies. The
Internet and Web Architectures that underlie this digital
revolution are fundamentally minimalistic and modular
and allow for decentralized growth based on minimal
commonality. Mobile and wireless technologies, includ-
ing cellular systems, embedded cameras, smartphones,
and the Internet of Things' bring connectivity to every
moment of one’s life. Search and online services that live
on the Web continuously and automatically capture,
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process, and adapt to analytics result in exponential and
ongoing improvement in performance, functionality, and
adoption. Technologic interventions in many areas,
such as marketing or search strategies, are developed
iteratively in ways that allow determination to be made of
which version results in greater amounts of a desired user
behavior. The promise of machine learning encourages
recentralization, or at least federation, of data into highly
scalable cloud infrastructures to support discovery.

For health and health care, the possibility of profound
positive disruption is clearly present but faces challenges.
Healthcare providers and technology giants are develop-
ing digital health products, services, apps, and platforms.
The demand for apps is growing rapidly with approxi-
mately 165,000 self-labeled healthcare apps available in
early 2015,” double the number from 2011.* It has been
estimated that 1.7 billion smartphone users worldwide
will have downloaded a healthcare app by 2018.°
However, reviews of healthcare apps commonly note
their lack of adherence to theory, evidence base, or
guidelines,” ” and significant progress is mired in a catch
22 of insufficient evidence of the efficacy of new
approaches and insufficient research needed to create
such evidence. Nonetheless, healthcare reform in the
U.S. and preparing health systems worldwide for the
increasing burden of aging populations with chronic
disease offers hope for change.

New technologies are able to detect and monitor
behaviors of interest and their multilevel determinants
from physiology to environment. These new data sources
involve not only the technologies that individuals
purposely use to monitor their health (e.g., smartwatches,
commercial  accelerometers, smartphone sensors
and apps, heart rate monitors)'™'" but also the digital
technologies used routinely that provide a wealth of data
about behaviors, their influences, and consequences.'>"”
The digital traces left behind as people interact with their
cell phones, social media sites, search engines, financial
transaction systems, and everyday household items
provide multilevel, temporally dense data on individuals
and populations that can be utilized to advance under-
standing of human behavior.'* Soon, the Internet of
Things will gather correspondingly dense physiologic
data; for example, lavatories may soon be able to
automatically perform biomarker and microbiota analy-
sis'” and bathroom mirrors could be equipped with facial
recognition software to identify health problems and
breath sensors to monitor alcohol or tobacco use.'

The process of discovery in this digital world is
increasingly bidirectional with the advent of citizen
science, described as “general public engagement in
scientific research activities when citizens actively con-
tribute to science either with their intellectual effort or
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surrounding knowledge or with their tools and
resources.”’’ By assisting researchers in the analysis of
big data and participating in large-scale experiments,
citizen scientists are co-creating a new culture in which
democratized research leads to greater and more rapid
discovery. For emerging technologies that have very few
users, services such as Amazon’s Mechanical Turk (www.
mturk.com) enable recruitment of a diverse group of
testers or participants for minimal cost. The rate of
evidence and discovery is poised for tremendous growth
thanks to new platforms such as Apple’s ResearchKit
(www.apple.com/researchkit/).

Consumer-facing applications of these technologies
bring many online and fuel improvements in the
user experience and engagement. Although some studies
suggest that things are improving,'® many digital health
interventions experience high levels of attrition'” and as
another paper in this series notes, securing the engage-
ment necessary for lasting behavior change presents
significant challenges for intervention developers.”’ >’

These Changes Support the Ability to
Handle Highly Complex, Multilayered
Issues in Health

Concurrent with advances in information technology are
three major trends in public health and medicine:

1. the emergence of chronic diseases as the main causes
of poor health, disability, and death;

2. an increased understanding of the multiple influences
on health, including the genome, microbiome, health
behaviors, social influences, and the environment; and

3. collaborative, self, and social health management.

The combination of these poses both an unprece-
dented challenge to traditional health care and new
opportunities for population health improvement.

The rising burden of chronic disease is a problem of
both volume and complexity.24 Tobacco use, excessive
alcohol consumption, diets high in sodium and low in
fruits and vegetables, physical inactivity, and uncon-
trolled high blood pressure have spread throughout the
world.”* The epidemics of obesity, diabetes, cardiovas-
cular disease, depression, and disability are now global in
scale,”” and both their incidence and prevalence are
expected to increase as a result of the aging of the
population and an exacerbation of health disparities.”
These risk factors and chronic diseases often occur in
combination. For example, those with a poor diet and
who are physically inactive are at elevated risk for
diabetes, cardiovascular disease, and mood disorders.
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Each disease is treated with multiple medications and
psychotherapies. In the U.S., approximately 92% of older
adults have at least one chronic condition and 62% have
multiple conditions.”” Furthermore, 87% of those aged
> 65 years take prescription medications, and among
those, the average number of such medications daily is
four.”® This same population sees seven different health-
care providers across four separate practices each year.””
Moreover, even though medical records are increasingly
digitized, use of these to coordinate, let alone optimize,
medical care appears to be many years away.”””’ Many
question the sustainability of these current approaches to
chronic disease, in particular with medical costs now
exceeding $3 trillion/year in the U.S., with projections of
>$5 trillion/year by 2023.”" If this is not sustainable,
then other approaches must be found, including care
provided by digital interventions.

The second trend is that the foundational principles
are changing by which the determinants of health and
health behaviors, and the design of health interventions
to improve health outcomes, are understood. Notions of
disease etiology and progression grounded in periodic
assessment of biomarkers and physiological measures
taken in medical office visits, or based on self-report of
behaviors or environmental exposures, are in decline.”
New methods of understanding health and illness are
emerging that are based on objective data on the genome,
behaviors, social networks, psychological factors, social
determinants, and the environment. For example, with
respect to obesity, the recent discovery of the human
microbiome™ and its potential relationship to obesity”™*
and obesity-related issues such as physical activity’” and
energy balance’® increases the emphasis on the need for a
systems biology approach to the problem” that incor-
porates environmental influences on health into the
equation.’® The aforementioned new digital health eco-
system allows data to be drawn in as needed from
relevant areas and processed in real time through
techniques like machine learning to yield predictions of
health states and behavioral phenotypes.’ Integration of
these markers collected from the context of people’s
everyday lives with genomic and clinical databases is on
the near horizon."’

The third trend is that health care is becoming more
user-centered. This is changing the role of both doctors and
patients as they learn, more than ever before, to collaborate,
interpret, and act on shared sources of information that
promote patient self-monitoring and self-management.*"**
These developments require new ways to view data privacy
and health data ownership in which patients, or collectives
of patients, become the owners of their own data and thus
increase their say in how health care is provided and how
health research is prioritized by whom and for whom.

Health Behavior Research: New Data,
Research Designs, and Methods

Technologic advances now illuminate what has been long
theorized about behavior, that it is influenced at multiple
levels—genetic, biological, social, environmental—and
that these influences are reciprocal, dynamic, and tem-
porally based.*>** Thus, the complexity of understanding
behavior strains current scientific methods and processes
—something that is labeled “data poor.” A data-poor
science requires researchers first to specify the questions,
design the study to answer these questions, and then
expend considerable time and resources to obtain study
participants and collect data as per a prespecified study
design. This approach provides considerable data control
but is inefficient and often results in findings that are
dated or obsolete, especially for the fast-paced technolo-
gic age.”” The enormous data collection effort is usually
used to answer only the question and then the data are
seldom shared and usually never used again. Moreover, it
fails to produce a cumulative science in which the next
iteration of the intervention builds on prior testing of the
intervention.”® Further, this data-poor science places
greater emphasis on “on average” insights. This is counter
to the emphasis of the recent Precision Medicine Initia-
tive"” that is focused on individual, contextual, and “life-
style” factors that influence prevention and treatment.

Data-rich science, on the other hand, supports moving
beyond single-level to multilevel models of analysis, and
replace coarse and long timescale predictions with
refined and multi-timescale predictions that match the
complexity of the interactions among behaviors, their
influences, and health outcomes. It also provides the
ability to implement and rapidly evaluate models of
behavior and interventions (the latter further described
below in the section on agile science). An exemplar of
this process is the field of meteorology that over its
history"® has leveraged five technologies and processes to
make this transition:

1. New communication technologies. In early meteorol-
ogy, ground-based weather measurements were inde-
pendent and isolated from each other, limiting it to
descriptive surveillance and annual predictions for
each location (e.g., Farmer’s Almanac). Continuous
advances in communications, from the telegraph to
the Internet, now allow meteorology to knit together a
network of data stations and share data between them.
This includes citizen science-driven approaches to
data acquisition and from things like the increasingly
ubiquitous weather stations in K-12 schools.

2. Data standards. As the sharing of meteorologic data
increased, the need to standardize the data shared
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increased. By ensuring the data were comparable
across these different measurement sites, more
robust models could be generated from the data. This
data sharing was particularly supported when all
weather sensor systems were linked via an early
version of the Internet (i.e., the AFOS computer
system in 1979).

3. Multilevel data collection. Extending data collection to
“multilevel,” initially by use of weather balloons and
later by satellite imagery improved explanation and
prediction by incorporating “higher-level” influences
of the weather in the computational models.

4. Computational resources. With more data from more
sources, there was an increasing need for computers
that could rapidly manage the data, particularly within
complex modeling frameworks such as dynamic
systems. These models allowed for increasingly more
accurate predictions especially as the feedback
loop between prediction and outcome was greatly
shortened.

5. Iteratively refining and optimizing multiple compet-
ing computational models. As computational capacity
increased, a wider range of data modeling techniques
emerged that further enabled more accurate and
precise predictions. Iteratively testing multiple com-
peting computational models and incorporating a
human “in the loop” of the predictions to further
refine them resulted in robust feedback loops for
translating past observations into actionable knowl-
edge such as daily weather forecasts.

For the behavioral sciences to transition to a multi-
level, multi-timescale predictive science, it similarly
needs to utilize these approaches to produce highly
individualized knowledge about how to improve health
behaviors.”” It could be argued that today’s current
behavioral theories are akin to the Farmer’s Almanac as
they are largely descriptive, past-oriented, and simplified
to a few elements. These models for understanding
behavior and behavior change provide largely “on
average” insights without the level of specification and
prediction that could occur in behavioral science if the
approach to communication, data, and iterative evalua-
tion of computationally complex, multilevel models now
common in meteorology could be replicated.”> For
example, it is well known that physical activity fluctuates
in the short term (e.g., day-to-day) and long term (e.g.,
over a lifetime), with many individuals attempting but
not sustaining changes in physical activity. Periodic
behavioral surveys or measurements such as the Beha-
vioral Risk Factor Surveillance Survey and National Health
and Nutrition Examination Survey are not capable
of tracking these changes, whereas the proliferation
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of new and more accurate wearable devices described
above can.

Communication, Data, and Analysis

Behavioral science can be based in a data-rich
research infrastructure that enables data sharing and
standardization. Ecologically valid data about behaviors
can be made available for use by researchers, patients,
and individuals to ask questions and share insights into
what supports and sustains healthful behavior change. As
sources of these data grow, merge, and become increas-
ingly temporally dense, the approach to research design
and data analysis must change. Traditional research
methods focus on manipulating an independent variable
to isolate its effects on the dependent variable to test an a
priori hypothesis. Nearly all of the other variables that
might “confound” the impact of the independent variable
on the dependent variable are relegated to the error
term via random assignment to independent variable
conditions. These new complex and extensive data sets
allow for many more variables to be considered,
assessments of their relative contribution on the behavior
of interest, and the dynamic interplay of these variables
over time.”””" The accumulation of knowledge includes
both discovery and confirmation, and thus the
Bayesian style of statistics may become more useful than
frequentist or null hypothesis statistical testing
approaches.”””" A Bayesian approach, by design, sup-
ports incremental model building via the use of “priors”
knowledge. When a new data set is gathered, it can be
compared to this to develop a “posterior” estimate, which
can then be used as the next prior, and the cycle
continues.””

As the models evolve from descriptive to predictive
and are iteratively improved, they support describing the
association of variables over time and predicting how the
magnitude and timing of the change of any one of these
variables in the system affects all of the other variables.
An example of such an approach to the unguided
treatment of depression has been applied in the European
FP7 ICT4DEPRESSION project,” which is currently
being evaluated in the E-COMPARED project
(www.e-compared.eu) in which in the conduct of RCTs
is combined with predictive modeling of both
health economic costs and individual patient progress
based on Markov, discrete event simulation,” and
Bayesian modeling techniques. By combining these
approaches, this project can both predict what the
outcome will be on average at the group level com-
pared with non-intervention or treatment as usual
as well as for which group of patients/users these
interventions will be effective and what kind of action
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could be undertaken beyond the individual inter-
vention level.

Finally, Bayesian analyses can support facets of a
problem that may not be as well represented in data
such as subjective utility functions. This is critical for
developing behavioral interventions for real-world use, as
it supports a decision framework that can better balance
the competing values of effectiveness at achieving a target
goal while also accounting for issues of usability, safety,
and cost.”””” For example, in the physical activity
scenario described above, incorporating subjective infor-
mation is important if sustained improvements in
physical activity are to be achieved as individuals
experience transitions in life such as marriage, childbirth,
and relocation to new environments.

Agile Science and lterative Evaluation

The emergence of new technologies, new technology
infrastructures, and new data sources have given rise to
many intervention apps, wearables, and devices that
target behaviors to support health, mental health, and
wellness. Though great in numbers, the quality and
evidence base for these are noticeably lacking.” This is
due, in part, to the fact that current scientific methods
and practices are not capable of focusing on the necessary
simultaneous and multiple iterative “trials” needed to
define, refine, and optimize behavior change interven-
tions. Instead of a phase-based model in which interven-
tions are developed and then tested, multicomponent,
multilevel, and data-rich interventions need to be con-
tinuously iterated, improved, and optimized. To accom-
plish this requires adapting methods from the
engineering community in which development and
evaluation occur in parallel, synergistically and iteratively
until the solution has been optimized, a process called
agile science.”” Agile science is intended to provide a
framework for rapid iteration and improvement of
systems before they are widely deployed.

Agile science focuses on identifying the most impor-
tant assumptions currently made about a problem, goal,
or solution, and then utilizing the most resource-efficient
strategy possible to evaluate these assumptions to sup-
port decision making. The aim is to achieve rigor through
a far greater emphasis on “trial and error” style science
whereby many tests are run quickly and efficiently, with
less emphasis placed on any one trial and more emphasis
on a form of rapid replication. This iterative process
incrementally builds on past successes while also identi-
fying plausible but ultimately dead-end lines of inquiry.
Agile science emphasizes the development of three
“knowledge products:” modules, computational models,
and personalization algorithms, which are incrementally

and iteratively developed through an initial “sprint”
phase, followed by an optimization phase, and finally
an open source “release” phase.

Modules are the fundamental building blocks of this
approach to behavioral interventions, as they represent
mechanisms that support behavior change. For example,
one module could be an adaptive goal-setting interven-
tion that defines a daily “ambitious but doable” goal for
an individual based on past behavior, psychosocial
variables (e.g., stress, social interactions), and context
(e.g., location). Computational models are used to predict
how modules, individuals, and context might interact
with novel users and contexts, and personalization
algorithms translate the modules and computational
models into dynamic decisions rules to support indivi-
duals in changing their behavior.”> Modules, when well
validated, can be used to develop and test more-robust
computational models and personalization algorithms
and provide the necessary building blocks for the sort
of personalized and perpetually adapting interventions
described below.

The authors envision that multiple competing models
can be evaluated simultaneously against one another on
their ability to support improved prediction and regulation
of a specific individual’s behaviors rather than simply “on
average” insights, a concept called “idiographic general-
ization.””” The iterative development of these knowledge
products within a data-rich ecosystem promises to enable
behavioral science to move toward predictive, multilevel,
and multi-timescale models of behavior change that can
drive precise behavioral interventions for each individual.
To work well, this role will be informed by human input
for support that is either beyond the capability of the
system or not preferable to the end users.

Beyond predictive modeling techniques, other
approaches will be needed to tackle different facets of this
complex multidimensional problem of behavior change if
it is to reflect the user-centered and collaborative care of
the future. For example, machine learning may play an
essential role in supporting pattern recognition within
complex data sets. For example, it is becoming increasingly
common for machine learning techniques to cull through
very large data sets of multiple individuals to identify
meaningful patterns of behavior.”>””

Applying the agile science process in behavioral
science is still in its formative stage, and many questions
remain about its utility. However, as reflected in the other
papers in this series, significant advances in behavioral
science research are being made and the authors believe
that the proposed methods and processes are compatible
with this work. Moreover, the authors believe that
this new approach to behavioral science is essential
to the optimization and compatibility of behavioral
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interventions within learning healthcare systems.””

Given appropriate standards of measurement and ontol-
ogies, and an increasingly powerful knowledge base, agile
techniques can be used to iteratively improve system
inputs and processes to achieve desired health outcomes
for individuals and populations.

Implications for Intervention Development and
Evaluation
Analyzing temporally dense data across levels not only
improves explanation and prediction but also can serve as
the basis for interventions that intervene at points in time
considered optimal for behavior change.”” Historically,
behavioral interventions addressed all individuals and
contexts. Then came personalized and tailored interven-
tions based on the baseline characteristics of the individual.
Although tailored interventions initially met with disap-
pointing results in both offline and online interventions,
more recent work using web-based tailored interventions
based on multiple theory-based moderators simultaneously
have shown improved outcomes on health behavior.”’

With the technologic revolution in data inputs, inter-
ventions can now be adapted initially and through the
treatment course to changes in the individual and
context.”” Early applications of such ecologic momentary
interventions®' focused on the ability of mobile technol-
ogies to push out interventions throughout the day,
sometimes with the advantage of recent data inputs or
environmental cues, but often with only time as an
adaptation variable (e.g., send dietary interventions
around meal times).’> More recently, intensively adaptive
interactions take into account “time-varying moderators”
such as stress or activity to adapt the intervention®” and
newly collected data increasingly drive the intervention.
Just-in-time adaptive interventions are being tested that
quickly sample and use data on an individual’s current
state, situational context, and prior intervention experi-
ences to deliver the most appropriate intervention at the
optimal time.”* For example, a recent study showed the
advantage of an adaptive system called “MyBehavior”
that provided context-dependent suggestions for walking
to improve physical activity (e.g., You are about to walk
to this location, try this slightly longer route to fit in more
activity).” Just-in-time adaptive interventions go beyond
intensively adaptive interventions: The intervention is
adjusted daily or more often based on the real-time
data being collected”® as they collect and analyze intensive
longitudinal data to develop predictive algorithms that
optimize the content and timing of the intervention and
potentially pre-empt behaviors before they occur.

For many conditions, particularly those that are chronic
and require sustained effort at behavior change such as
obesity and mental health, current intervention technologies
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frequently fail to provide clinical benefit in real-world settings.
This is primarily because people do not use them.””** Having
a human presence, such as a provider, coach, or peers can
enhance both use and efficacy.””” However, it is possible
that the functions of human coaching, such as providing
accountability and support,” may be automated through
virtual conversational agents.”*””

Although digital interventions have shown promise in
pilot studies, current evaluation methods are undeve-
loped or perform poorly. Though methods are needed
that protect users and other stakeholders and ensure
efficacy, safety, and cost effectiveness,” standard evalua-
tion methods, such as RCTs that lock down interven-
tions, are often ill suited for this new rapidly changing
field'" A number of solutions have been proposed,
including methods that allow for iteration and learning
during a trial,”® adaptive designs, regression discontinuity
designs, A/B testing, open source platforms,77 or those that
use post-marketing surveillance to monitor safety and
effectiveness,”® and others discussed in this set of papers.””

Conclusions

This is a time of three major trends: increasing capabilities
inherent in communication, computing, and data science;
unsustainable growth in the complexity and cost of health
care; and a movement to a more user-centered and
collaborative approach to health promotion and health
care. As outlined in this paper, the first and third trends can
be leveraged to help address the second if public health is
open to incorporating models of research and practice that
are already being used in other data-intensive domains.
The approach advocated in this paper is a radical departure
from business as usual in behavioral science, and although
well-founded concerns regarding such a departure need to
be addressed, as this and other papers in this series outline,
there are compelling reasons to increase efforts to explore
the potential provided by these new technologies to trans-
form science and improve public health.

This 2016 theme section of the American Journal of Preventive
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