
RisQ: Recognizing Smoking Gestures with Inertial Sensors

on a Wristband

Abhinav Parate Meng-Chieh Chiu Chaniel Chadowitz Deepak Ganesan

Evangelos Kalogerakis

University of Massachusetts, Amherst

{aparate,joechiu,cheni,dganesan,kalo}@cs.umass.edu

ABSTRACT
Smoking-induced diseases are known to be the leading cause of
death in the United States. In this work, we design RisQ, a mo-
bile solution that leverages a wristband containing a 9-axis iner-
tial measurement unit to capture changes in the orientation of a
person’s arm, and a machine learning pipeline that processes this
data to accurately detect smoking gestures and sessions in real-
time. Our key innovations are four-fold: a) an arm trajectory-based
method that extracts candidate hand-to-mouth gestures, b) a set of
trajectory-based features to distinguish smoking gestures from con-
founding gestures including eating and drinking, c) a probabilistic
model that analyzes sequences of hand-to-mouth gestures and in-
fers which gestures are part of individual smoking sessions, and d)
a method that leverages multiple IMUs placed on a person’s body
together with 3D animation of a person’s arm to reduce burden of
self-reports for labeled data collection. Our experiments show that
our gesture recognition algorithm can detect smoking gestures with
high accuracy (95.7%), precision (91%) and recall (81%). We also
report a user study that demonstrates that we can accurately detect
the number of smoking sessions with very few false positives over
the period of a day, and that we can reliably extract the beginning
and end of smoking session periods.

Keywords
Smoking detection; Inertial measurement unit; Wearables; Mobile
computing

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcomputers—
Portable devices; I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Motion

1. INTRODUCTION
Tobacco use remains the single largest preventable cause of death

and disease in the United States and worldwide. According to CDC
estimates, cigarette smoking kills more than 440,000 Americans
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each year, either through cancer, heart disease, stroke, or lung dis-
eases. It also increases the chances of other serious illnesses, such
as diabetes [2]. In addition, smoking-related illness in the United
States costs $96 billion in medical costs and $97 billion in lost pro-
ductivity each year. The numbers are more alarming worldwide,
where tobacco use is increasing rapidly in low- and middle-income
countries. In fact, it is estimated that there are about a billion smok-
ers worldwide, with more than 80% in the low and middle-income
countries. Of these, about 6 million die through smoking-related
causes each year.

At the heart of addressing this scourge is early detection and
timely treatment. Several smoking cessation programs have been
developed that show that intervening at opportune moments can
help a person quit smoking. In theory, continuous sensing using
the mobile phone and wearables has the potential to enable such
informed and timely interventions both by observing the evolution
of a patient’s smoking pattern over time, as well as measuring con-
textual factors that influence smoking (environment, social interac-
tions, stress, etc). However, the first step towards such methods is
the ability to detect smoking events in real-world settings, a goal
that has proven elusive.

We argue that there is a dire need for a simple and reliable smok-
ing detector that has high sensitivity and specificity, and is easy to
wear on a day-to-day basis. Existing methods fall short on one or
more of these axes. A sensitive detector for smoking is a tomog-
raphy meter (e.g. CReSS monitor [1]). However, the user needs
to attach the tomography device to the cigarette prior to smoking.
This is both burdensome and can change the underlying smoking
behavior. A recent alternative is to use the deep respiration cy-
cles associated with inhalation and exhalation of smoke, which can
be detected by a respiration chest band (mPuff [4] and Sazonov et
al [17]). Unfortunately chest bands are cumbersome to wear for
long periods and therefore have limited appeal beyond clinical tri-
als. Other wearables that have been previously proposed include
RF-based proximity sensors worn on the collar and wrist to detect
when the hand is in the vicinity of the mouth, but this is not ro-
bust to confounders [18]. One promising approach is to embed a
sensor in a cigarette lighter which detects whenever the lighter is
lit [19]. Unfortunately this approach does not provide information
about individual puffs and its duration, which is particularly useful
for determining the degree of nicotine intake across subjects [11,
12].

Our work relies on a wristband embedded with a single, low-
power 9-axis inertial measurement unit (IMU) that fuses informa-
tion from an accelerometer, gyroscope, and compass to provide 3D
orientation of the wrist. IMUs are easy to integrate with wrist-worn
wearables, many of which already have accelerometers embedded
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(a) Smoking when standing still
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(b) Smoking when walking
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(c) Eating with a spoon

Figure 1: Illustration of IMU signals for various hand-to-mouth gestures. (a) & (b) Smoking gestures are characterized by a quick
change in orientation when taking a cigarette towards the mouth and a long dwell time while taking a “smoking puff”. (c) In contrast,
eating gestures are characterized by a slow change when taking a spoonful of food towards the mouth and a very short dwell time.

for calorie or activity tracking. However, there are many challenges
in robustly recognizing smoking gestures from orientation data.

1.1 Challenges
The central challenge that we face is that we need to detect and

recognize a smoking gesture from a plethora of other gestures that
a user performs each day. While recognition of intentional gestures
from inertial sensors is commonplace in gaming devices (e.g. Nin-
tendo Wii), there are several challenges in achieving our goal in a
natural setting.
Signal variation due to orientation changes: The first chal-
lenge is that the signal from the inertial sensor varies significantly
depending on the user’s body orientation. Thus, if the user changes
his/her body orientation while smoking, the orientation output of
the sensor will change. An example is shown in Figure 2, where
a 180� change in the user’s body orientation completely changes
the signal. However, we still need to detect the beginning and end
of a smoking gesture despite the unknown user’s body orientation.
Note that this problem is not present in gesture recognition systems
designed for user interaction, such as the Nintendo Wii. This is be-
cause a user typically faces a fixed direction during the interaction.
In addition, the user can consciously adjust the gesture so that it is
recognized by the system.
Detecting smoking gestures: A second challenge is that a smok-
ing gesture needs to be detected without any explicit information
given by the user regarding the beginning and end of a smoking
session. Devices such as the Nintendo Wii address this problem
by having the user press a button, thereby explicitly providing in-
formation about the beginning and end of the gesture. Other ges-
ture recognition systems such as the Bite-Counter [8] use a similar
method: they assume that the user presses a button prior to an eat-
ing session. In contrast, we wish to avoid any user interaction alto-
gether, and instead design a passive gesture tracking system. Thus,
we aim at designing methods that distinguish a smoking gesture
from a huge number of different gestures that a user can perform
using his/her hands.
Concurrent activity while smoking: A third challenge is that
the user might smoke while performing a concurrent activity. Con-
current activities can modify the characteristic patterns of smoking
gestures and further complicate our problem. For example, Fig-
ure 1 shows how a smoking gesture looks when the user is sta-
tionary (Figure 1a) against when the user is walking (Figure 1b).
We can see that smoking gestures have a few bumps when the user
walks, in addition to the distortions at the beginning and end of
the gesture where the user brings the cigarette down and contin-
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Figure 2: IMU signals for the smoking gesture in Figure 1(a)
when the user changes facing direction by 180�. The charac-
teristic patterns observed in IMU signals change with the user’s
orientation.

ues walking by swinging his/her hand. Similarly, the user might
be conversing with a friend while smoking, or might perform other
activities while sitting or standing. All such concurrent activities
also complicate the smoking gesture recognition problem.

Confounding gestures: A fourth challenge is that many other
gestures have arm movement patterns similar to smoking. For ex-
ample, a user can perform several isolated gestures each day that
involve raising the hand towards the mouth and bringing it back
down similarly to smoking gestures. In particular, eating and drink-
ing activities not only have similar hand-to-mouth gestures, but also
involve repeated sequences of these gestures, as in smoking. Fig-
ure 1 shows an example of an eating gesture. Visually, there are
differences in the pattern of eating compared to smoking. How-
ever, designing an algorithm that robustly distinguishes smoking
from other confounding gestures across different users is particu-
larly challenging.

Labeling smoking puffs: In order to recognize smoking ges-
tures robustly, we design a method based on supervised classifica-
tion. However, to train such a classifier, we need training data in the
form of fine-grained labels for the beginning and end of each ges-
ture. Many existing approaches for obtaining such labeled data are
not feasible or have drawbacks: a) requesting self-reports from the
users is impractical, since users cannot possibly label each smok-
ing puff manually while smoking: such an approach would force
the users to change their gestures from smoking to interacting with
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a device to create these self-reports, b) video capture of the smok-
ing session for post-facto annotation is restrictive, since it requires
the user to always face the camera, and c) having an observer an-
notate each smoking puff is cumbersome and not scalable. Thus,
one particular challenge is how to enable fine-grained labeled data
collection while limiting the burden on participants.

1.2 Contributions
The key innovation of our work is the ability to recognize se-

quences of hand gestures that correspond to smoking sessions “in
the wild”. This involves a sensing pipeline with several important
aspects: a) we detect candidate hand-to-mouth gestures by continu-
ously tracking and segmenting the 3D trajectory of a user’s hand, b)
we extract discriminative trajectory-based features that can distin-
guish a smoking gesture from a variety of other confounding ges-
tures like eating and drinking, c) we design a probabilistic model
based on a random forest classifier and a Conditional Random Field
that analyze sequences of hand-to-mouth gestures based on their
extracted features, and accurately outputs the beginning and end of
smoking sessions. Finally, (d) in order to train the classifier and
Conditional Random Field, we also propose a simple method to
gather training labeled data “in the wild”: we ask subjects to wear
two IMUs, one on the elbow and one on the wrist, which allows
us to build 3D animations of arm movements that can be easily
labeled by a third party without compromising the subject’s pri-
vacy. The only limited burden on the subject is to specify coarse
time windows where smoking occurred to verify that we detect ges-
tures within the correct periods of time. Each module in this whole
pipeline addresses challenges specific to our problem domain, and
we present several new ideas and algorithms.

Our results show that we can detect smoking gestures with 95.7%
accuracy and 91% precision. In addition, we can detect smoking
session time boundaries reliably: the error in the estimated duration
of a smoking session is less than a minute. Finally, we demonstrate
with a user study that we can accurately detect the number of users’
smoking sessions in the period of a day with only few false posi-
tives (less than two in our study). In all, we think that RisQ is a very
promising approach for use in smoking cessation and intervention.

2. BACKGROUND
Inertial Measurement Unit: The Inertial Measurement Unit (IMU)
is an electronic device consisting of 3-axis accelerometer, 3-axis
gyroscope and 3-axis magnetometer. IMU has an on-board pro-
cessor that fuses the output of these three sensors to compute the
orientation of the device in a 3D world (absolute) coordinate sys-
tem defined by y-axis pointing towards the magnetic north, z-axis
pointing perpendicular to the ground in the direction opposite to
the earth’s gravity and x-axis pointing to the geographical east. We
use the Invensense MPU-9150 IMU for our experimental study.
This sensor outputs the 3D orientation of a device in the form of
a quaternion.
Quaternions: Quaternions are convenient mathematical entities
for representing orientations and rotations of objects in three di-
mensions. Quaternions have found a great applicability in robotics,
computer graphics, and computer vision communities due to the
ease in calculations for performing rotations of objects in 3D space.

Formally, a quaternion is defined using a scalar component q
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Figure 3: Top: 3D arm
and its initial reference
frame. A quaternion ro-
tates the arm about a
rotation axis (shown in
cyan). Bottom: rotated
arm and its updated ref-
erence frame.

It can be shown that a point
p in 3D space with coordinates
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} can be rotated using a
quaternion with the following for-
mula:
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It is straightforward to see that a
quaternion not only represents a 3D
rotation, but can also represent the
3D orientation of an object. Given
an initial orientation of a 3D object
defined by its initial frame of refer-
ence, the quaternion q rotates the ob-

ject yielding a new orientation (see Figure 3).

3. SYSTEM OVERVIEW
In this section, we provide an overview of the RisQ computa-

tional pipeline that recognizes smoking gestures and sessions. We
also overview the training data collection methodology we used to
obtain fine-grained labeled data for the purpose of training our su-
pervised classification method.
Computational pipeline: Figure 4 gives an overview of the com-
putational pipeline that we use for detecting smoking gestures and
sessions. At the lowest layer of the pipeline is the extraction of
quaternion data from the single wrist-worn 9-axis IMU.

The second layer in the pipeline is the segmentation layer that
extracts segments containing candidate gestures from the raw sen-
sor data and filters out extraneous data. The intuition behind the
segmentation process is that, while performing a hand gesture, hu-
mans start from “a rest position” in which the arm is relaxed, then
move their arm, and finally the arm falls back to another, possibly
different rest position. Thus, the gestures tend to lie in segments
between these resting positions. The segmentation layer accom-
plishes the segment extraction by computing the spatio-temporal
trajectory taken by the wrist using quaternion data and tracking rest
positions. Based on the computed trajectory, at each time step it
computes the distance of the wrist from rest positions, and identi-
fies segments using a peak-valley detection algorithm. The output
of this layer are the extracted segments containing candidate hand
gestures.

In the third layer of our pipeline, our method computes a fea-
ture vector for each segment, consisting of features that can dis-
criminate hand-to-mouth gestures corresponding to smoking from
a large number of other hand-to-mouth gesture candidates. We then
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Figure 4: RisQ: Quaternion data processing pipeline

use a supervised classifier, called Random Forests [5, 7], that out-
puts the probability for the type of gesture (“smoking”, “eating” or
“other” gesture) based on the extracted features for each segment
individually.

The top-most layer in the processing pipeline is a session de-
tection layer that identifies whole sessions (“smoking”, “eating”,
or “other”) based on the Random Forest classifier outputs and the
segment features. The key intuition behind this layer is that each
smoking session involves a continuous sequence of smoking ges-
tures, and is unlikely to contain gestures from other activities. We
use a probabilistic model based on a Conditional Random Field
(CRF) [14] that captures probabilistic dependencies between the
type of gestures contained in consecutive segments. In particular,
it has the advantage of filtering out spurious classification outputs
of the lower layer and robustly detecting the beginning and end of
smoking sessions.

While the focus of this paper is on recognizing smoking ges-
tures and sessions, our approach can be tailored to other instances
of repetitive gestures. In §6.3, we use eating sessions to train our
method, and we find that it performs considerably better than state-
of-art eating detectors that use inertial sensors.
Labeled data collection: We use a novel data collection method-
ology to obtain fine-grained gesture labeled data from participants
for training our method. Our data collection framework consists of
two tools: (i) a logging application and (ii) a 3D visualization and
labeling tool. The logging application collects data from on-body
IMU sensors placed on the user’s wrist and upper arm. Since our
goal is to reduce the burden of labeling for the user and avoid in-
terfering with his gestures, our logging application provides a sim-

ple user-interface to log events on his mobile phone. This helps
us identify time windows that require fine-grained labeling of the
smoking or eating gestures. The 3D visualization and labeling tool
produces 3D hand animations from the logged sensor data and pro-
vides an interface for fine-grained labeling of the gestures, such as
“smoking a puff” or “taking a bite of food”. The type of gestures
can be easily labeled by other users in these animated sequences.
Unlike video recording, our visualization tool allows users to see
and label gestures from any viewing angle they prefer.

4. GESTURE DETECTION AND
RECOGNITION

In this section, we describe how we detect and label hand-to-
mouth gestures when the user wears the single IMU on his wrist-
band. The first step in our data processing pipeline is to partition
the quaternion time-series obtained from the IMU into segments
such that each segment contains a gesture (§4.1). The second step
is to extract some features that can be used to discriminate different
types of gestures (§4.2). The last step is to recognize the detected
gestures and extract smoking sessions (§4.3).

4.1 Gesture detection
In order to detect a gesture, it is essential that we segment the

time series of quaternions into segments, such that each segment
contains a complete gesture. The problem of correctly segmenting
sequences of quaternions presents a number of challenges. First,
the segmentation should extract segments representing the entire
gesture duration. Otherwise characteristic features that are useful in
classifying a gesture will be lost. Moreover, the extracted segments
should not be much longer than the gesture, otherwise the com-
puted features related to the gesture will be inaccurate. Another
fundamental challenge is that the characteristic patterns observed
in a time series of quaternions are dependent on the orientation of
the person’s body performing the gesture. For example, the pattern
observed for a gesture when the person is lying on a bed is very
different from the pattern observed when he is standing. The prob-
lem gets further complicated due to the large number of variations
in the gestures observed for the same activity, within and across
users, making the variability of characteristic patterns extremely
high. An additional challenge comes from the huge number of all
possible gestures and possibly confounding gestures performed by
humans throughout their daily life.

The intuition behind our segmentation approach is the observa-
tion that the humans tend to perform a gesture starting from an ini-
tial rest body pose, and then ending the gesture in another, possibly
different, rest pose. This observation holds true for the hand-to-
mouth gestures we intend to identify. For example, a person may
start a smoking gesture by having his hand lie on an armrest of
a chair, then move his hands towards his mouth, then back to the
armrest of the chair or the top of a table. Alternatively, the arm
might end up being straight, hanging from the body. In general,
the beginning and end rest poses are not necessarily stationary and
are not necessarily identical. In the following sections, we describe
our segmentation approach based on continuous tracking of the rest
positions of the fore-arm and computing the spatio-temporal trajec-
tory of the wrist in 3D space.
Relative trajectory computation: Our first step towards identi-
fying hand-to-mouth gestures is computing the spatio-temporal tra-
jectory of the hand from the stream of quaternion data. The main
challenge here is that trajectory is affected by body motion and ori-
entation. For example, a smoking gesture when a person is walking
takes a much longer path in 3D space compared to the same ges-
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Figure 5: Figure (a) shows a noisy trajectory for a smoking puff gesture and the smooth trajectory (green curve) obtained after
curve-fitting. Figure (b) shows trajectories for two consecutive puffs while standing still. These two trajectories are well-aligned
for the isomorphic gestures. Figure (c) shows the trajectory for a smoking puff gesture when the user is walking, computed from
acceleration data (blue curve) and quaternion data (brown curve). The acceleration-based trajectory is significantly elongated and
distorted when the user is walking, while holding the cigarette in his mouth. The quaternion-based trajectory instead is computed
relatively to the elbow and is free of such motion artifacts.

ture performed when the person stands at one place. Similarly, a
smoking gesture could be affected by any changes to the pose of
the user’s body while smoking.

The key insight in our approach is that we care less about the
absolute trajectory of the hand in 3D space. We care more about the
trajectory of the hand relative to a body joint, such as the shoulder
joint. Such a relative trajectory would not depend on the orientation
of the person’s body, and every smoking gesture should result in
roughly isomorphic trajectories with similar shape characteristics.

While such a relative trajectory would be easy to compute if the
individual also had an IMU close to the shoulder, the fact that we
only have a single wrist-worn IMU complicates the problem. To
address this, we make a simplifying assumption that the position
of the elbow remains stationary (the shoulder joint does not rotate)
while the gesture is being performed. Specifically we compute the
trajectory of the wrist relative to a stationary elbow, assuming that
the wrist is in a fixed, unit distance away from it. We find that the
above assumptions have little influence in our trajectory computa-
tion, since hand-to-mouth gestures primarily involve rotating the
elbow and not moving the upper arm.

More formally, given a time sequence of quaternions (q1, q2,
. . . , q

n

), we can compute the trajectory taken by the wrist by com-
puting the position of the wrist for each time step t (t = 1...n). The
position of the wrist w at time t in the elbow’s frame of reference
F can be computed as follows:

w = q

t

·w0 · q�1
t

(1)

where w0 = 0

ˆ

i + 1

ˆ

j + 0

ˆ

k (i.e., has coordinates
ˆ
0 1 0

˜
) rep-

resents the position of the wrist in the device’s local coordinates
based on the assumption that the length of the forearm of person
has unit length. This assumption also works in our favor as the
computed trajectories are independent of the particular variations
of the arm length across the population.

Due to this approximating nature of the computed trajectory and
the continuous shifts in the elbow position, the wrist trajectory does
not always appear smooth. Thus, we smooth the trajectory by fit-
ting a curve using cubic B-splines. Figure 5(a) shows a sample tra-
jectory for a smoking puff gesture before and after the smoothing
operation.
IMU vs Accelerometer: One question that is worth asking at
this point is whether we really need a 9-axis IMU that provides

quaternion data (by fusing information from the accelerometer, gy-
roscope, and compass) to compute trajectories, or whether we can
do the same with a single accelerometer. Figure 5(b) shows two
smoothed sample trajectories taken for two consecutive cigarette
puffs while standing still. These trajectories are computed rela-
tive to the elbow and align well as the gestures are isomorphic.
In Figure 5(c), we show the accelerometer-based and quaternion-
based trajectories for the smoking gesture when the user is walk-
ing. We see that the accelerometer-based trajectory in this case
appears longer. This is because it is relative to the starting point
in world coordinates. On the other hand, the trajectory computed
using quaternions is relative to the elbow has similar characteristics
to trajectories observed when standing still.
Segment Extraction: Our segmentation procedure is based on
the observation that humans tend to keep their hands in rest posi-
tions and any gesture starts from one rest position and terminates at
another rest position. The key challenge is determining these rest
positions in a continuous stream of wrist movement. The rest posi-
tions need not be the same across gestures (e.g. rest position while
sitting and smoking would be different from standing and smok-
ing). Even the beginning rest position for a single smoking puff
might be different from the final rest position, since there can be
many positions where the human arm is “relaxed”.

Our segment extraction method involves four stages:
I First, our segment extraction method continuously tracks the

rest position from which a current hand gesture started. To
detect the rest position, the trajectory is traced according to
short sliding time windows (e.g. 10 seconds). Within each
window, positions where the wrist velocity is very low are
computed. If one or more candidates exist, then we compute
the centroid of these low velocity points as the “rest point”.
Thus, we can now annotate each point in each trajectory trace
with the most recent point corresponding to the rest position
for which the hand gesture started.

I Second, we compute the spatial distance of each point in the
trajectory from the most recent rest point. For any hand-to-
mouth gesture, we expect that the distance from the rest point
should increase rapidly, plateau for a short period, and then
return to the next rest point.

I Third, we use a peak detector to detect peaks and troughs in
the distance time series obtained from the previous stage, and
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look for a tell-tale trough-peak-trough pattern that is typical
of a hand-to-mouth gesture. To filter false positives from
either tiny hand movements or very long gestures, we use
a relatively loose threshold for distance separation between
trough and peak, as well as the expected duration of a typical
smoking puff. At this point, the segment extraction pipeline
provides the trough-peak-trough segment to the next level of
the classification pipeline.

4.2 Segment Feature Extraction
In order to recognize the type of gesture in each segment, we

need to compute features that can discriminate different types of
gestures. The feature extraction procedure is based on the ob-
servation that a hand-to-mouth gesture can be divided into three
stages: i) an “ascending” stage that corresponds to the trough to
peak movement when the hand goes towards the mouth, ii) a “sta-
tionary” stage that corresponds to the period where the hand stays
near the peak (close to mouth), and iii) a “descending” stage where
the hand goes from peak to trough i.e. back to the rest position.
These three sub-segments are useful for extracting features as we
describe below.

Table 1 shows the set of features computed for each segment.
The following paragraphs describe the features we compute from
the smoothed spatio-temporal trajectory and the quaternion infor-
mation:

I Duration features. These features measure the time dura-
tion of the segment containing the gesture and the durations
of the three stages within the segment: ascending, descend-
ing and stationary.

I Velocity features. Second, we use the computed positions
of the wrist at each time step to compute the instantaneous
velocity of the wrist for the ascending and the descending
stages. We compute the average speed, the maximum speed
and the variance in speed for both ascending and the descend-
ing stages giving us six features.

I Displacement features. These features measure the displace-
ment of the wrist during the ascending and the descending
stages of the wrist motion. We measure the vertical displace-
ment, displacement on the plane parallel to the ground and
the net displacement at the end of each stage as features.

I Angle features. From the orientation information, we can
compute the roll component of the rotation about the axis of
the arm. This is computed by converting the quaternions into
Tait-Bryan angles. We call the rate of change in the angle
of the rotation along the axis of the arm “roll velocity". We
compute the median and the maximum of instantaneous roll
velocities and use them as features. Also, we compute the
net roll angle as the feature. We extract these 3 features for
the ascending and the descending stage. Next, we compute
“pitch” that measures the angle between the vector along the
arm and the direction of the gravity. We use pitch angle at
the peak point of the ascending and the descending stages
as features. Next, using the distribution of pitch angles ob-
served at each time step for the ascending stage, we compute
9 values that give the 10

th

, 20

th

, ..., 100

th percentile values
as the features. For the descending stage, we use median
pitch as a feature.

4.3 Gesture recognition
After extracting segments that contain individual gestures, the

next step in our pipeline is to recognize each gesture contained in
each segment. The input to this step is a set of segments with their
features and the output is a set of labels representing the type of

gesture (e.g. “smoking”, “eating", or “other” depending on avail-
able labels).

Labeling segments poses a number of challenges. First, there
is no simple mapping between the duration, velocity, displacement
and angular features and the labels. For example, if the duration
of the gesture is more than a particular threshold, we cannot infer
that the gesture is a “smoking puff” with total certainty. It might
be the case that the user instead drinks slowly from a cup. There-
fore, we have to also consider other features: for example, smoking
is likely to also be strongly correlated with certain ranges of arm
twisting angles, wrist velocities, horizontal and vertical displace-
ments and so on. Manually constructing a mathematical formula
that detects all smoking gestures based on features is very hard.
Noise in the trajectory features make things worse, thus we need
to adopt a probabilistic method that outputs the probability of as-
signing each label to each segment. In the following paragraph,
we describe a probabilistic classifier for recognizing each individ-
ual gesture. Unfortunately, classifying each gesture independently
from all the others in a sequence of segments does not seem to work
very well. For example, a sequence of gestures might be labeled as
{smoking, smoking, eating, smoking, smoking}. However, it
is very unlikely that the user interrupts and intermixes gestures in a
small period of time. Such noisy labelings can easily occur due to
feature noise and large deviation of wrist trajectories from the ones
in our training data. Thus, we employ a probabilistic model that
takes as input the probabilistic output of the classifier for each in-
dividual segment, and additionally examines how likely is for suc-
cessive segments to have the same or different label. Based on this
probabilistic model, we estimate the most likely joint labeling of
all segments together. We describe this probabilistic model later in
this section.
Individual classification of gestures: To build a mapping from
segment features to segment labels, we observe that the type of ges-
tures is likely to be correlated with certain value ranges of segment
features extracted in the previous section. For this reason, we use a
classifier that has a form of a decision tree. A decision tree contains
a set of nodes and at each node, the value of an individual feature
is compared to a threshold. Then depending on whether the feature
of the segment has a smaller or larger value than the threshold, the
classifier examines the left or right child node, which in turn exam-
ines the value of another feature. When a leaf node is reached, the
decision tree outputs a probability based on how many segments in
our training data had the same set of splits while traversing the tree.

The thresholds and feature choices at each node of the tree are
automatically constructed from the training data during an offline
stage. The best choice of features and thresholds are selected to
maximize the confidence of predictions [7].

Unfortunately, fitting a single decision tree in the training data
results in poor performance. The reason is that a single set of splits
yields predictions that are suited only for segments whose features
are very similar to the ones of the training segments. A popular
alternative is to build an ensemble of decision trees: each decision
tree is fitted to small different random subsets of the training data.
This leads to decorrelating the individual tree predictions and, in
turn, results in improved generalization and robustness [7]. This
ensemble of decision trees is called random forest classifier. The
output of the random classifier is the probability of assigning a la-
bel to each segment, computed as the average of the probabilities
outputted by the individual decision trees.
Joint classification of gestures: As we explained in the begin-
ning of the section, classifying each segment independently from
all the others in a sequence of segments yields noisy label predic-
tions. Instead, we classify all segments jointly by using the out-
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Feature Set
Duration Features

Duration 4 Total gesture duration, and duration for the ascending, descending, and the stationary stage.
Velocity Features

Speed 6 Mean, max and variance of the wrist speed. We compute these for the ascending and the descending stages.
Displacement Features

distZ 2 Vertical displacement of the wrist during the ascending and descending stage.

distXY 2 Horizontal displacement of the wrist during the ascending and descending stage. This is computed on a plane
parallel to the ground.

dist 2 Net displacement between the rest position and the peak position. This is computed for the ascending and
the descending stage.

Angle Features

roll velocity 4 Median and maximum angular velocity about the axis of the arm. We compute 2 features each for the
ascending and the descending stage.

roll 2 Net angular change about the axis of the arm during the ascending and the descending stage.

pitch 12

Angle between the arm and the direction of the gravity (pitch angle). We compute the pitch angle at
the peak during the ascending and descending stage. Also, we obtain 9 decile features from the pitch
pitch distribution for the ascending stage. We compute the median pitch angle for the descending stage.

Table 1: Feature set extracted for a segment containing a gesture. The table describes each feature type and gives the count of
features used for each type.

put of the random forest and also considering that consecutive seg-
ments in a sequence are more likely to have the same rather than
different label.

Given a sequence of k = 1...K segments, we introduce a ran-
dom variable C

k

for each segment representing the type of ges-
ture contained in the segment. We express the joint probability
of assigning a sequence of labels to all the random variables C =

{C1, C2, ..., CK

} of the segments given their features x = {x1,x2,

...,x

K

} as follows:

P (C|x) =

1

Z(x)

Y

k
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k,k+1
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k

, C
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The unary factors �(C

k

, X

k

) assess the consistency of each indi-
vidual segment to each label based on the random forest classifier.
The pairwise factors  (C

k

, C

k+1) assess the consistency of each
pair of consecutive segments to their labels. The denominator Z(x)

serves as a normalization constant for each input sequence to ensure
that the sum of probabilities over all possible label assignments is
equal to 1. The type of this model is known as Conditional Random
Field [14] in the literature of machine learning.

In our implementation, the unary factors have the following form:

�(C

k

= l,x

k

) = exp(✓

l

f

l

(x

k

) + ✓

l0)

where f

l

(x

k

) are the probabilistic outputs of the random forest
classifier for each label l = {smoking, eating, other}. The pa-
rameters {✓

l

, ✓

l,0} re-scale the probabilities of the random forest
classifier, and are learned from the training data. The exp func-
tion ensures that the final result will lie in the interval [0, 1] (i.e.,
will also be a probability) after applying the normalization con-
stant, as typically done in logistic regression and log-linear CRF
models [20].

The pairwise factors evaluate how likely is to assign pairs of la-
bels in consecutive segments and are expressed as:

 (C

k

= l, C

k+1 = l

0
) = exp(✓

l,l

0
)

The parameters ✓
l,l

0 are also learned from the training data. The
learned parameters turn out to favor the same label for consecutive
segments, as expected.

Parameter learning: It is extremely hard to hand-tune the pa-
rameters ✓ = {✓

l

, ✓

l,0, ✓
l,l

0} in the above probabilistic model. In-
stead, the model parameters are learned such that they maximize
the likelihood of the training sequences. Specifically, the param-
eters are estimated to maximize the following objective function
[13]:

L({�
k

}) =

NX

n=1

log(P (C[n] | x[n]))� µ||✓||2

where the first term expresses the log likelihood of the training
sequences given their features. The second term is a regulariza-
tion term that penalizes large values in the parameters. Such large
values would favor over-fitting of the parameters to the training
dataset, and are less likely to generalize to new data. The parame-
ter µ is selected through cross-validation.

The objective function is maximized using the L-BFGS method
[15] which is a popular optimization method for solving uncon-
strained optimization problems. The objective function is convex
function, thus, a unique maximum exists [13].
Inference: Given a sequence of segments, we estimate the most
likely joint assignment of labels to the segments based on the above
model. From the assigned labels, we can simply extract the dif-
ferent gesture sessions by tracking when the label changes in the
sequence of segments.

Inference is performed with the technique known as max-product
belief propagation [13], which yields the most likely sequence la-
beling in this type of model. The complexity of the evaluating the
unary and pairwise terms, as well as executing belief propagation
is linear in the number of segments, thus the labelings can be pre-
dicted very efficiently.

5. LABELED DATA COLLECTION
In this section, we describe the framework used to capture ground

truth data in uncontrolled environment settings with a low labeling
overhead for the user, and the dataset that we obtained through this
approach. The main idea is to have the subject wear two inertial
sensors, one at the wrist, and one at the elbow, and segment the
data post-facto through a 3D visualization tool. We note that the
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(a) (b) (c)

Figure 6: Smoking gesture visualization using sensor data ob-
tained from the two IMUs placed on the upper arm and the
wrist.

use of two sensors is used only for gathering training data. During
actual usage of RisQ (i.e., during testing), the user always wear a
single IMU on a wristband, which is more practical, user-friendly,
and less costly.

5.1 Labeling Framework
Sensors: We use Invensense MPU-9150 IMU to obtain orienta-
tion data sampled at 50Hz. We fit a user with a wristband and an
armband, each containing an IMU device and use a mobile app to
log the sensor data on the phone. Our goal is to reconstruct the
hand gestures performed by a user using the logged data.
Constructing hand gesture: A human arm consists of an upper
arm and a forearm. The upper arm is connected to the shoulder, and
is connected with the forearm at the elbow. The forearm extends
from the elbow to the wrist. For constructing the hand motion, we
assume that the orientation is uniform for the entire forearm and the
entire upper arm. This assumption is simplistic as the orientation of
the forearm close to the elbow can be different from the orientation
of the wrist but this assumption enables us to reconstruct a fairly
accurate hand motion with fewer sensors.

In order to reconstruct the hand motion, we use a digital model
of a 3D human skeleton in a polygon mesh format (Figure 6). The
3D model consists of skeletal limbs that that can be oriented inde-
pendently by applying the orientation information in the form of
quaternions to the shoulder and elbow joints of the skeleton. The
orientations given by the quaternions are applied to the skeleton
hierarchically as in skeleton-based animation methods commonly
used in computer graphics applications. Given that we log the sen-
sor data at 50Hz, we render the 3D model at 50 frames per seconds
where we draw a new pose of the 3D model every frame to enable
real-time playback. Rendering is implemented in Processing 2, a
popular library used in computer graphics.
Labeling: Using the 3D animation and visualization method de-
scribed above, we can now mark the start and the end of a gesture
like a cigarette puff. However, manually visualizing and marking
the gesture for hours of data can be a time-consuming exercise, and
in the absence of any additional information, it is difficult to distin-
guish smoking or eating from any confounding gestures that may
look similar. To address this, we ask the participating users in the
data collection to mark the beginning and the end of the smoking
and eating periods using a mobile app. For fine-grained gesture
labeling, we limited our efforts to the marked periods.

5.2 Gesture Dataset
Our dataset consists of IMU data collected for over 32 hours

from 15 volunteers for over 20 smoking sessions, 15 eating ses-
sions, 6 drinking sessions, and a variety of other gestures. Users

typically wear sensors for several hours, therefore, our dataset con-
tains many potential confounding gestures. Of this data, we had to
discard a few smoking and eating sessions due to interruptions and
extreme noise in the data. This left us with 28 hours of data, con-
taining 17 smoking sessions and 10 eating sessions. Overall these
sessions include 369 smoking puffs and 252 food bites. The data
included users performing several concurrent activities including
smoking while standing alone, smoking in a group while having a
conversation, smoking using a hand-rolled cigarette and smoking
while walking around.

We used our 3D visualization and labeling tool to hand-label the
start and end of each smoking puff within the smoking periods re-
ported by the participants. There are a few instances when defining
a precise start or a precise end of a gesture is not possible. Since
our focus is on detecting a smoking puff, any interval that begins at
least 1 second prior to the puff and ends after at least 1 second of
the puff is valid for training our algorithm.

6. EVALUATION
Our evaluation has three parts. We start with evaluating how well

we detect individual smoking gestures (taking smoking “puffs”)
and whole smoking sessions. Then, we compare our results against
prior work that detects wrist gestures and smoking behavior. Fi-
nally, we include a user study for which we implemented the full
computational pipeline on a mobile phone, and demonstrate the
effectiveness of RisQ for recognizing users’ smoking sessions in
real-time.

6.1 Recognizing smoking sessions
The ultimate goal of our work is to detect smoking sessions ac-

curately so that we can track: a) how many times a user smoked
each day, b) the length of each smoking session, and c) how many
puffs they took during each session.
Smoking session detection: First, we look at how many smoking
sessions were identified correctly by RisQ. We ran a leave-one-
out cross-validation experiment where we leave a single smoking
session for testing, and use rest of the data for training. We repeat
this procedure for each smoking session in our dataset described
in §5. At each time, we evaluate the output of max-product belief
propagation in our CRF.

RisQ detected 15 complete sessions out of the 17 sessions in
our dataset— it missed 2 smoking sessions for two users who had
gestures largely different from other users.

RisQ is also able determine the duration of smoking sessions.
Table 2 shows the results of this experiment. The average ground-
truth session duration in this set up was 326.2 seconds. We observe
an average error of 65.7 seconds in our session duration estimate
for the 17 smoking sessions in our leave-one-out cross-validation
experiment. We note that when we exclude the two undetected
sessions, the average error is reduced to 26.22 seconds. The errors
are caused due to the approximate estimates of the beginning and
end time-stamps of each session.

Statistic Avg ± Std. Dev.
Duration of smoking sessions 326.21±19.65 s

Error in estimation 65.7±30.6 s

Table 2: Errors in session duration estimates using our CRF.

6.2 Recognizing smoking gestures
We examine now how well we can recognize individual hand-to-

mouth smoking gestures that correspond to each smoking puff in
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Performance Metrics
Accuracy Recall Precision False-positive rate

Random Forests 93.00% 0.85 0.72 0.023
CRF 95.74% 0.81 0.91 0.005

Table 3: Performance metrics for smoking puff detection obtained using 10-fold cross-validation evaluation with i) Random Forests
classifier (RF), ii) Conditional Random Fields (CRF) with Random Forests. CRF reduces 75.83% of the number of false positives
generated by RF, thus improving precision.

a session. Since the total number of smoking gestures is large in
our dataset (369 “smoking puffs”, 252 “food bites” and 4976 other
gestures), we perform a 10-fold cross-validation experiment here:
we split the gestures into 10 groups (folds), and of the 10 folds, a
single fold is retained for testing, and the remaining 9 are used for
training. Then we repeat for each test fold.

First, we evaluate how well individual smoking gestures can be
detected by the Random Forest (RF) classifier which examines each
segment independently of the others. Then we evaluate the perfor-
mance of the CRF that infers the type of gesture for each segment
by considering the probabilistic dependencies of the segment labels
in a sequence.

Gesture detection performance: Table 3 shows the performance
metrics for 10-fold cross-validation for smoking puff gesture de-
tection using i) the RF classifier , and ii) CRF. We see that the RF
classifier gives 93% accuracy in gesture recognition, and a moder-
ate precision value of 0.72 in detecting smoking gestures. The CRF
significantly improves the performance by reducing the number of
false positives by 75.83%. This results in a much higher precision
value of 0.91 in detecting smoking gestures, and overall 95.74%

accuracy in overall gesture recognition. The CRF only causes a
slight decrease in recall from 0.85 to 0.81.

Optimizing performance: We now examine how we can op-
timize the precision and recall for smoking gesture detection by
tuning our method. While training the RF classifier, we use a cost
function that adds a penalty for missing a training smoking gesture.
When this penalty is increased, it increases recall for the smoking
gestures, although it also increases the number of false positives.
Figure 7 shows the change in precision and recall obtained using
RF versus CRF as this penalty increases. We can make two obser-
vations here: first, a false positive rate as small as 0.05 results in a
significant drop in precision (0.6) of the RF classifier. This is be-
cause of the large number of non-smoking hand gestures. Second,
the CRF cleans up the mis-classifications of the RF classifier to im-
prove precision. Figure 7 shows that this improvement can be as
high as 0.53. However, this improvement comes at a cost of drop
in recall, as CRF smooths out some of the true gestures. We can
see that the best performance is achieved for a false positive rate of
0.023.

Generalization across subjects: We now examine whether our
method can successfully detect gestures for a user by using train-
ing data only from other users. In other words, we examine how
well our method generalizes to new users’ data not included during
training. For this experiment, we test the smoking gesture detec-
tion for each of 14 smokers, given training data from the other 13
in our dataset. Figure 8 shows precision and recall in this “leave-
one-user-out” scenario using the Random Forest classifier and the
CRF. The precision and recall of our method are high on average
which indicates that our method is able to generalize to new users.
In particular, the CRF improves precision, but it may occasionally
filter out correctly detected puffs. This happens if the user’s ges-
tures and their temporal distribution is largely different from what
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Figure 7: Precision & Recall versus False Positive rate, while
adjusting the cost function of the Random Forest (RF) classi-
fier during training. A small increase in false positive rate re-
duces precision of the RF classifier but the CRF improves the
precision dramatically.

Eating Sessions All data
Recall Precision Recall Precision

Bite-Counter 0.60 0.57 0.65 0.03
RF 0.92 0.78 0.69 0.64

CRF N/A N/A 0.64 0.78

Table 4: Eating gesture detection using Bite-counter [8] for
cases: i) within eating sessions when it is known that user is
having a meal, and ii) when session information is not avail-
able.

is observed in the training. This suggests the it is better to acquire
training data from a variety of users.

6.3 Comparison #1: Bite Counter
Our first comparison examines a different IMU-based gesture

recognition technique, and the benefits of using our computational
pipeline.

Bite-Counter [8] is a state-of-art method to detect eating bites
while having a meal using angular velocity from a gyroscope worn
on the wrist. The intuition is that the angular velocity about the axis
along the wrist increases above an empirically observed threshold
(T1) while taking a bite and drops below another threshold (T2)
after taking the bite. Also, there is a minimum time-lapsed (T3) be-
tween these two threshold-crossing events while eating food, and a
threshold on the time interval between two consecutive bites (T4).
Thus, this algorithm requires searching for the values of these four
parameters: {T1, T2, T3, T4} that have the best score. The score
is given by 4

7⇥ precision+

3
7⇥recall. One caveat is that the Bite-

Counter algorithm knows when an eating session is in progress
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Figure 8: “Leave-one-user-out” evaluation results. The CRF improves precision over the RF classifier. Occasionally the CRF smooths
out puffs correctly detected by the RF classifier resulting in a slightly lower recall.

In-Sessions All data
Recall Precision Recall Precision

Bite-Counter 0.60 0.71 0.73 0.05
RF 0.97 0.95 0.85 0.72

CRF N/A N/A 0.81 0.91

Table 5: Smoking gesture detection using Bite-counter [8] for
cases: i) within smoking sessions when it is known that user is
smoking, and ii) when session information is not available.

since the user presses a button, whereas RisQ requires no such in-
formation.

Eating gesture detection: For a fair comparison, we first look
exclusively at eating sessions in our dataset, and train RisQ to de-
tect eating gestures using the same feature set and approach that we
used for smoking. For this purpose, we labeled the bite gestures in
10 of the eating sessions in our dataset. Table 4 shows the results
for two cases — one where we examine eating gesture detection
within known eating sessions (case for which Bite-Counter is opti-
mized), and one where we look across the entire data that includes
all types of gestures. For evaluation limited to eating sessions, we
only use the Random Forest classifier, and excluded CRF as we do
not need to detect sessions. Even when only looking within the
eating sessions, we see that RisQ has substantially higher precision
and recall (21% improvement in precision and 32% improvement
in recall). We suspect that our benefits are primarily due to the use
of more robust trajectory-based features rather than just the wrist
rotation, and the use of the Random Forest classifier as opposed to
simple thresholds. As might be expected, when the eating sessions
are not known a priori, the performance of Bite-Counter drops sub-
stantially. Bite-Counter still has good recall, but the precision is
extremely low (0.03) i.e., the algorithm is generating a huge num-
ber of mis-classifications since it is picking up a substantial fraction
of cases where the wrist is rotated, and detecting them as a bite.

We must note here that RisQ was not designed to detect eat-
ing behavior in the first place. Thus, it is possible that with more
careful exploration of features, the detection of eating gestures can
improve. However, the fact that it performs better even without
such tuning demonstrates the broader potential of our approach for
gestures other than smoking.

Smoking gesture detection: Just as RisQ can be re-trained to de-
tect eating gestures, Bite-Counter can be re-trained to detect smok-

ing gestures by looking for wrist rotations that are representative
of smoking. We use the methodology in [8] to learn appropriate
parameters for Bite-Counter if it were used for detection smoking
gestures. Table 5 shows the comparative results. The results clearly
show that RisQ perform much better than Bite-counter.

6.4 Comparison #2: mPuff
We now turn to an alternate approach for detecting smoking ges-

tures using a respiration chest band: mPuff [4]. Although the re-
sults are on different datasets, mPuff reports precision of 91%, true
positive rate of 83% and false positive rate of 8%. Our results are
similar for precision, and better for other metrics.

To directly compare these methods, we collected several hours
of data from the Zephyr Bioharness Chestband for respiration data
and the wrist-worn IMUs. Our dataset was captured in the wild, and
has several smoking sessions in addition to other activities such as
drinking, driving, walking, working on a computer, and so on.

We used the approach suggested in mPuff, which suggests a list
of features and the use of an SVM classifier for training the param-
eters. However, there was substantial noise in the breathing dataset
due to other concurrent activities (walking, driving, etc), as a result
of which many breathing waveforms had to be discarded prior to
training the classifier. The results of training using the clean breath-
ing waveforms were unsuccessful, and we got low precision/recall
numbers using mPuff. The results using RisQ instead were similar
to those shown earlier.

While further exploration is needed for a quantitative compari-
son, we highlight that dealing with noise and confounders is a chal-
lenge no matter what sensor modality is used for detecting behav-
iors such as smoking. The fact that RisQ works well despite the
confounders is one of its major strengths.

6.5 User Study in the Wild
Our final study looks at the entire computational pipeline learnt

using the dataset described in §5, and executed in real time for new
users.
Android-based Implementation: Our Android-based implemen-
tation for the user study comprises of a wearable wristband with an
IMU and bluetooth that continuously streams quaternions at a rate
of 50 Hz to an Android phone. The RisQ computational pipeline
for real-time smoking session detection is executed on the phone.
Our application generates notifications when it detects that a smok-
ing session is in progress and prompts the user to confirm if the
detection is correct. Apart from smoking detection, our application
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(c) Day 3

Figure 9: User study results for 4 subjects for 3 days. Figures show the following information for each subject and each day: i)
ground-truth count of the smoking sessions, ii) number of sessions detected correctly i.e. true positives, and iii) number of falsely
detected sessions i.e. false positives. The results show that we rarely missed a session and had only a few false detections (0-2) per
day.

Figure 10: Smoking monitor mobile app and an IMU-equipped
wristband.

also acts as a logging app to record data from the IMU worn by a
user and to record ground truth events like the beginning and the
end of a smoking session.

The complete UI of the mobile application and an IMU equipped
wristband are shown in Figure 10. The main interface of the app
has a set of UI buttons that can be used by a user to report smok-
ing events as well as confounding events like drinking and eating.
A user can use this to report the session boundaries using before,

during and after the session events. In addition, the UI has a tab to
view the events previously reported by the user. A user can use this
interface to correct the reported event times or to delete a report if
there was an error in submitting reports.

The complete gesture recognition pipeline has been implemented
in Java. This pipeline detects smoking gestures every 20 seconds
in the the buffered sensor data. The classification is done using
a Random Forest classification model, learnt using the Weka data
mining software [10]. The classification outputs are then buffered
for a minute and used in forming a CRF model to detect a smoking
session in progress. The inference using CRF is done every minute,
thus there is an average latency of 30 seconds in detecting the start
of a smoking session.

User study: We recruited 4 users for this study. The users wore
the IMU-fitted wristband for four hours per day for three days. We

asked these users to always carry the phone with our mobile ap-
plication installed. To record the ground truth information, we ask
users to report the rough start and the end time for their smoking
sessions using our app. Also, our app prompted these users when-
ever it detected smoking and the users could respond by confirming
yes or no. Our goal was to check how well our algorithm would
work if it were integrated into a real-world intervention algorithm
that a therapist might use, such as a phone call or text message.
How well can RisQ deliver real-time interventions?: Figure 9
shows the actual number of sessions, number of sessions detected
by the mobile app correctly and the number of sessions falsely de-
tected for the four users. We see that the number of sessions varied
between 1 to 5 in a day for the period that the mobile app was run-
ning. Of all the 30 reported smoking sessions, we missed only 3

sessions. The number of false session detections was low and less
than or equal to 2 per day. In our informal exit interviews with
the users, they reported no discomfort from the small number of
false alarms that was raised by RisQ. In summary, the user study
provides strong evidence of the effectiveness of our technique in
recognizing smoking sessions across users in real-world scenarios.

Statistic Value
Time for segmentation 92.34±6.85 ms (52-134ms)
Time for feature extraction 79.88±5.30 ms (9-227ms)
Time for CRF Inference 5.89±2.50 ms (1-23ms)
Memory 12-20 MB
Binary Size 1.7 MB

Table 6: System overhead measured on a Galaxy Nexus phone

RisQ Implementation benchmarks: We finalized our evalua-
tion with a brief benchmark of our real-time implementation of
RisQ. We first demonstrate that our mobile app has a low system
overhead. Table 6 shows the summary of the execution overhead
of the smoking detection pipeline measured on Samsung Galaxy
Nexus device running Android 4.3 OS. The execution of the three
stages in the pipeline: segment extraction, feature vector extraction
and session detection using the CRF take an average time of 92.34

ms, 79.88 ms and 6 ms respectively. These overheads are incurred
every 20 seconds for segmentation and feature extraction and once
in a minute for the CRF inference. The memory requirement to
execute our app is modest and varies between 12-20 MB. Users
running our application for the user study did not find our app to
impact the performance of their phones in their daily usage.
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Operating Voltage 2.4-3.6 V
Operating Current 4.25 mA
(accel,gyro,compass)
Streaming Data rate 1150 bytes/s

Table 7: Specifications for Invensense MPU-9150 IMU

Power Consumption: Table 7 gives the performance metrics for
the operation of Invensense MPU-9150 IMU that we used in our
user study. This device comes with a 110mAh battery that provides
up to 4 hours of bluetooth streaming of quaternion data sampled at
50Hz. The limited execution time of the device is due to the blue-
tooth communication overhead that requires an operating current of
50 mA when active. In comparison, the operating currents required
for execution of accelerometer, compass (sampled at 8Hz) and gy-
roscope sensors are 140 µA, 350 µA and 3.6 mA respectively. The
execution time can be increased to 12 hours by using a larger bat-
tery that fits the form factor of a wristband. This can be increased
further by reducing the sampling rate and by switching off the com-
pass. The performance of our approach is not impacted by the lack
of compass as the compass is primarily used to correct the drift
accumulated around the yaw-axis. Since we extract orientation-
independent features for short duration gestures, the impact of the
small drift on the features is negligible.

7. RELATED WORK
In this section, we describe the two areas of related work — ges-

ture recognition in computer vision as well as gesture recognition
and motion capture using wearable inertial sensors.
Computer Vision: This line of research deal with the problem of
gesture detection and recognition using a camera. The camera is
used to track a person and the motion of the arm. This gives the
coordinates of various points on the body that can be used as fea-
tures for gesture recognition. Yang et al. [24] used Hidden Markov
Models (HMM) for segmenting and identifying the set of gestures
for human-robot interaction. Elmezain et al. [9] proposed a method
to use Conditional Random Fields to separate gestures from non-
gestures without needing to train for non-gestures. Wang et al.
[23] combined HMMs with CRFs in a Hidden Conditional Ran-
dom Field that can be used as a single gesture class detector or a
multi-way gesture classifier. All these methods employ similar ma-
chine learning formulations, however, recognizing arms accurately
in images or video is prone to errors due to occlusions, clothing,
illumination changes and other errors in pose tracking from 2D im-
ages. These computer vision methods also assume that the user is
always expected to turn towards the camera. Yin et al. [25] use
HMMs for gesture recognition but it requires a use of special glove
to enable the tracking of the arm in a cluttered background.
Wearable sensors: The advances in wearable sensors technology
has generated a lot of interest in gesture recognition and other novel
uses of these sensors. Vlasic et al. [22] proposed a full body mo-
tion capture system using inertial sensors. Such systems are useful
to capture a person’s full body motion, but require several such
sensors, acoustic sensors, careful calibration and initial body pose
estimates. Agrawal et al. [3] proposed PhonePoint Pen to enable
users to use a mobile phone as a pen to write in the air using an
accelerometer in the phone. This work identifies six basic strokes
in the English characters that are essentially straight lines and two
half-circles. These strokes are identified using correlation with the
ideal strokes. uWave [16] uses a dynamic time warping (DTW)
technique to recognize gestures from the accelerometer present in

Nintendo Wii. DTW is used to match a temporal sequence with
a given template, when the number of templates is small. Chen
et al. [6] use a 6-axis inertial sensor to track interactive gestures
and rely on push-to-gesture mechanism to spot the gesture segment.
All these approaches detect “control" gestures that have little vari-
ations across users. Dong et al. [8] proposed Bite Counter to detect
food bites in an eating session using a gyroscope. We compared
this with our approach and found it to be less useful for smok-
ing detection. Varkey et al. [21] train two SVMs: first to detect
a high-level activity in a window of inertial sensor data and an-
other to detect micro-activities within a window. They evaluated
their approach for smoking detection using a synthetic dataset pro-
vided by non-smokers who imitated the smoking gestures. Their
approach for recognizing puffs relies on detecting two consecutive
micro-activites ‘arm moving up’ and ‘arm moving down’. They
showed that the cumulative misclassification for micro-activity de-
tection within smoking sessions is around 20%. This approach can
lead to a significant error in estimating the number of puffs and the
puff duration and may perform worse if the data from confound-
ing gestures is included. This work has not been evaluated for data
in the wild and it is unclear if this approach can be used to detect
smoking session boundaries reliably.

8. CONCLUSION
Mobile phones can play a major role in detecting and preventing

harmful user behavior, such as smoking. In this paper, we tackle
the problem of recognizing smoking behavior using a wristband
equipped with a single 9-axis inertial sensor and a mobile phone
application. Our results demonstrate that we can accurately detect
smoking gestures in the wild. While we focus on smoking gesture
recognition in this paper, we also have preliminary experiments that
indicate that our pipeline can be used for detecting other behaviors
such as eating. This could be also useful for preventing harmful
eating patterns that can lead to obesity. In the future, we plan to im-
prove our trajectory extraction procedure, enrich our method with
more trajectory features, and investigate more complex probabilis-
tic models for recognizing different types of users’ gestures and
behavioral patterns.
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