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ABSTRACT
Craving usually precedes a lapse for impulsive behaviors such
as overeating, drinking, smoking, and drug use. Passive esti-
mation of craving from sensor data in the natural environment
can be used to assist users in coping with craving. In this
paper, we take the first steps towards developing a compu-
tational model to estimate cigarette craving (during smoking
abstinence) at the minute-level using mobile sensor data. We
use 2,012 hours of sensor data and 1,812 craving self-reports
from 61 participants in a smoking cessation study. To esti-
mate craving, we first obtain a continuous measure of stress
from sensor data. We find that during hours of day when crav-
ing is high, stress associated with self-reported high craving
is greater than stress associated with low craving. We use
this and other insights to develop feature functions, and en-
code them as pattern detectors in a Conditional Random Field
(CRF) based model to infer craving probabilities.
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INTRODUCTION
Tobacco smoking is known to cause serious health issues such
as cancer, respiratory diseases, cardiovascular diseases and
metabolic diseases [1]. Smoking is responsible for 480,000
deaths per year in US alone, according to estimates from
the Centers for Disease Control and Prevention (CDC) [1].
World-wide, first and second hand smoke causes over 6 mil-
lion deaths per year, according to estimates from the World
Health Organization (WHO) [3]. Encouragingly, nearly 7 out
of 10 (68.8%) adult smokers report a desire to quit and almost
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half of all smokers attempt to quit each year [1], however
only 6.2% of those attempts are successful [2]. The majority
relapses [14] in the first few days after a quit attempt.

Decades of prior research on smoking cessation with self-
report has found that major predictors of a smoking lapse
include stress (or negative affect) [42], smoking cues (e.g.,
seeing a cigarette) [40, 46], and craving [9, 18, 38]. Similar
to other impulsive behaviors, craving is prevalent during the
first few postquit days. Passive estimation of craving from
sensor data in the natural environment [20] can enable the de-
velopment of novel mobile tools to address the adverse con-
sequences of craving during smoking abstinence.

Recent works on continuously estimating similar mental pro-
cesses in the natural environment such as stress [13] from
mobile physiological sensors, and [30] electrodermal activ-
ity (EDA) and detection of generalized tonic–clonic (GTC)
seizures automatically are encouraging developments. But,
to the best of our knowledge, there has not been any work to
estimate craving from sensor data in the natural environment.

Estimating craving automatically from physiological re-
sponse in the field environment is more challenging than esti-
mation of stress. There are several reasons for this. First, the
pathways linking perception of stress and its manifestation in
physiology are now well established. In the case of identify-
ing stress-related arousal, various features from physiological
signals, such as heart rate variability (HRV) from Electrocar-
diogram (ECG) have been shown to be effective. To the best
of our knowledge, no such work exists for inferring craving
from physiological response.

Second, there have been works [21] showing activation of
specific parts of the brain in response to craving but activation
of these components of the brain are not known to have a spe-
cific and identifiable manifestation in physiological arousal.
Third, no gold standard exists that can be used as labels for
training and testing a craving model, especially in field set-
tings. Therefore, we are limited to using self-reports as la-
bels. Given the inherent variability of self-reports in captur-
ing mental states, even for well-researched phenomenon such
as stress, the best correspondence between physiological re-
sponse and self-reports collected in the field is 0.71 [13].



In this paper, we take the first step towards developing a com-
putational model to estimate craving for each minute (dur-
ing smoking abstinence) using sensor data. We use multi-
ple key insights that are well-supported by craving research
(conducted using self-reports). First, rather than targeting
estimation of craving as a general phenomenon, we restrict
ourselves to craving estimation during the post-quit period of
smoking cessation, when craving estimation has the highest
clinical utility [6].

The second insight is that although craving may not manifest
itself clearly in a visible physiological response, high-craving
moments may lead to elevation in the quitters’ stress levels as
they struggle to cope with craving [24]. However, stress may
not always be due to craving, and in some cases, craving may
not result in a stress response. Hence, stress can’t be used
as a direct surrogate of craving. The final insight we use is
that time of day does have a noticeable effect on self-reported
craving. This effect is supported by smoking abstinence re-
search [26], and was observed in our data as well.

We analyze 2,012 hours of sensor data and 1,812 craving self-
reports from 61 participants in a smoking cessation study in
their post-quit period. We first verify each of the above in-
sights in our dataset with appropriate statistical tests. We use
a recent model of stress measure [13] for stress assessment.

In our analysis of craving self-reports during the post-quit pe-
riod, we observe that craving is moderate in the morning, de-
creases in late morning, increases substantially in the after-
noon (after lunch) and increases further in the evening-night.
This observation is in line with a similar finding reported in
an independent study [26].

In our analysis of association between craving and stress,
we find that during the hours of day when craving is high,
stress associated with self-reported high craving is signifi-
cantly greater than stress associated with self-reported low
craving. On the other hand, during hours of a day when
craving is relatively low, stress associated with self-reported
high craving is not significantly greater than that associated
with self-reported low craving. In addition, we note that high
craving in a minute is generally followed by high craving in
the next minute, since craving dissipates gradually over time.
Similarly, low craving in a minute is mostly followed by low
craving in the next minute.

Prior to describing the mCrave model we present a statisti-
cal and exploratory analysis of craving, with an emphasis on
gaining insights into the relationship between craving, time
of day, and stress. In particular, we propose and statistically
test two hypotheses describing this relationship.

Next, we use these insights to propose our mCrave model for
craving estimation, which is based on a linear-chain Condi-
tional Random Fields (CRF) model. The model is provided
with observed input signals which contain salient patterns in-
dicating heightened craving at the locations of the patterns.
On the basis of these patterns, the model is capable of several
types of inferences, such as inferring the probability of any
given sequence of low/high craving labels, inferring the most
probable sequence of labels over any period, or even infer-

ring the time series of marginal probabilities of high craving
for each minute. As part of the training algorithm, the model
learns the weights of the aforementioned patterns such that it
can make accurate inferences. To do this, the model requires
ground-truth craving labels for at least a subset of the data.
A strength of the CRF model is that it can also make use of
minute-to-minute transition patterns, such as craving to non-
craving, and vice-versa, to improve the inference accuracy.

BACKGROUND
In this section, we illustrate the smoking lapse process, the
craving process, and the utility of estimating craving.

Smoking Lapse Process
In the abstinence phase, deprivation of nicotine leads to with-
drawal symptoms such as anxiety, sadness, anger, concentra-
tion impairment, increased hunger, and others [27, 36]. The
withdrawal effect may be accentuated by environmental stim-
uli (e.g., visual exposure to smoking cues, alcohol) and so-
cial triggers (e.g., social gathering of friends who are smok-
ers) [40]. Quitters who are better able to cope with these with-
drawal effects (e.g., craving and stress) are relatively more
successful in maintaining abstinence [5, 27]. For lapsers, a
rapid increase in negative affect and smoking urges/cravings
is associated with the first smoking lapse [4, 42]. Unfortu-
nately, the first lapse usually leads to a full relapse [16].

Craving Process
Craving or urge to smoke is generally conceptualized as the
motivational state of desire for nicotine [15, 38]. Although
urge and craving may have different meaning [19], they can
be used interchangeably as there is a correlation of 0.96 be-
tween self-reported urge and craving [38, 40, 47]. Hence, we
consider urge and craving interchangeably hereafter.

During the post-quit abstinence phase, individuals experience
high craving soon after quitting that reduces as time pro-
gresses [18, 38, 49]. Periodic episodes of prolonged craving
are associated with stress (or negative affect) [24,39,42], time
of day [26], smoking cues [38, 40], and alcohol consump-
tion [40]. During abstinence, individuals often need to cope
with prolonged, recurring, and intensified craving effects in
order to maintain abstinence. Individuals experiencing higher
craving soon after quitting are more likely to relapse [18].

Assessing Craving During Smoking Abstinence
Data collected in smoking cessation studies [9, 17, 26, 48]
rely mostly on retrospective recall of craving and stress (or
negative affect) that may be prone to recall biases and er-
rors [12]. To reduce these problems, Ecological Momen-
tary Assessments (EMA) [41,44] collect repeated momentary
self-reports in the natural environment, longitudinally.

The use of EMA in behavioral medicine is a significant
methodological advancement, but it also has several limita-
tions. First, EMA depends on the participants’ volition to
answer probes, making them prone to noncompliance due to
not being available at the time of the prompt [34], or to re-
porting burden, which reduces data integrity. Second, EMA
prompted at random times may miss the most opportune mo-
ment (e.g., intense stress and subsequent craving prior to a



lapse). Third, recall from the past (from minutes to hours)
may still suffer from recall bias and error.

Smoking researchers have envisioned [37,43] the use of ubiq-
uitous computing (e.g., smartphone and wearable sensors) in
smoking cessation research. Recent advances in ubiquitous
computing have now made it feasible to obtain critical mea-
sures (e.g., stress) from sensors [11, 13, 28].

Benefits of Minute-level Craving Estimation
In this work, we estimate craving at the minute-level during
the abstinence phase in smoking cessation. Continuous esti-
mation of craving during abstinence has several utilities.

First, the minute-level objective estimation of craving will
not rely on participants’ self-assessment, which eliminates
recall-bias and noncompliance. Second, participant burden
of frequent self-reporting can be reduced. Third, researchers
can analyze craving data at a higher temporal resolution (e.g.,
prior to a lapse) and assess lapse risk. Fourth, this work accel-
erates the discovery of a model that can reliably predict first
lapse or high risk situations during the abstinence period.

RELATED WORKS

Research on Craving from Self-reports
Craving has been studied extensively in smoking cessation
research via self-reports. It has been found that escalation
of stress and craving during a quit attempt may contribute
to smoking lapse [6]. In addition, there is an increased risk
for lapse following a sudden spike in craving [25]. Dynamic
changes in craving during smoking cessation [38] show that
it is episodic in nature.

Time of day effect on craving has also been widely re-
ported [26]. During abstinence, craving is less in the morn-
ing, it gets elevated in the afternoon (i.e., after lunch) and
increases further in the evening.

Associations of stress and craving have also been studied.
For example, stress is associated with increased craving in-
tensity and decreased self-control for rewarding substances
(e.g., nicotine/cigarettes) in abstinent smokers [24].

Most of the research on craving, such as the ones discussed
here, however, has been based on self-reports (e.g., EMA). In
addition to suffering from reporting biases and response bur-
den, low temporal resolution of self-reports has prevented a
study of craving in the minutes preceding a high-risk or lapse
situation. Our proposed model for continuous estimation of
craving can now facilitate investigation of craving around sig-
nificant clinical events, including the minutes prior to lapses.

Continuous Estimation of Mental States from Sensors
Advances in ubiquitous computing have resulted in several
models for continuous estimation of the mental states of hu-
mans. For example, [45] demonstrates a method to dynami-
cally infer multiple levels of user frustration caused by system
response delays using physiological sensors. Computational
models also exist to continuously infer physiological stress
using electrocardiogram (ECG) and respiration data [13, 29].
These contemporary works indicate that ubiquitous sensors

have progressed to the point that they can continuously mea-
sure behavior, physiology, and mental states from sensor data.
Our work makes use of some of these models (e.g., stress) as
inputs, but none of these existing models can be used directly
to develop a model for estimating craving.

DATA COLLECTION
We describe the smoking cessation study [32] whose data was
used in the development of the mCrave model. The study was
approved by the Institutional Review Board (IRB).

Devices and Sensor Measurements
Wearable Sensor Suite: Participants in the study wore a wire-
less physiological sensor suite (AutoSense [11]) underneath
their clothes. The wearable sensor suite consisted of two-lead
electrocardiograph (ECG), 3-axis accelerometer, and respira-
tion sensors. Participants also wore an inertial sensor (i.e.,
smartwatch), which includes a 3-axis accelerometer and a 3-
axis gyroscope, on each wrist. Each sensor transmitted the
sensor data continuously to a mobile phone. AutoSense res-
piration sensor has its own battery and it lasts for 10 days
on a 750 mAh battery. It uses a low-powered ANT Radio to
connect with the phone. The phone (which collects GPS data
continuously and keeps its wireless radio on for data recep-
tion) lasts for 13 hours on a single charge. The smartwatch
we use lasts 3 days on a 500 mAh battery. The sampling
rate is 21.3 Hz for the respiration sensor, 64 Hz for the ECG
sensor, and 16 Hz for each axis of the accelerometer on the
smartwatch.

Mobile Phone: Participants were given a smartphone to carry.
It receives and stores data from sensors on the body and on the
phone. It also collects information via EMA, which captures
the characteristics of situational factors associated with crav-
ing. These factors include stress and physical activity levels.
In the smoking cessation study, participants used the phone
to report (at random prompts) their craving level on a Likert
scale of 1-6.

Smoking Cessation Study
Participants: Participants were 61 smokers (27 females) with
mean age of 37±12.54 and years-of-education of 14±1.82.
Ethnically, there were 47 Caucasians, 10 African-Americans,
2 Native Hawaiian, and 2 from multiple races. All partici-
pants reported smoking 10 or more cigarettes per day for at
least 2 years, and reported a high motivation to quit. To qual-
ify, participants had to pass a screening session prior to be-
ing enrolled in the study. The screening included assessment
of current medical and mental health status and history of
any major medical and psychiatric illness. Screening also in-
cluded assessment of smoking behavior, mood, and other be-
havioral health measures. Participants were excluded if they
had ongoing major medical or psychiatric problems and if
they had other comorbid psychiatric and substance use prob-
lems. Also, participants who were not entrained to the normal
day/light diurnal cycle were excluded to control for variation
in diurnal physiological activity and behaviors.

Protocol: Once enrolled, the participants picked a smoking
quit date. Two weeks prior to their quit date, subjects wore



the sensor suite for 24 hours in their natural environment. Af-
ter completion of the 24 hours of monitoring, which we call
the pre-quit session, participants returned to the lab for their
second visit. Smoking cessation counseling was provided
starting at this second visit. Then the participants returned
to the lab on the assigned quit date to attend a counseling ses-
sion and to begin the 72 hours of monitoring in the field; this
we refer to as the post-quit session. They came back to the
lab each day to confirm smoking status via an expired breath
sample in a carbon monoxide (CO) monitor. During each day
of monitoring (24 hours pre-quit and 72 hours post-quit), the
participants wore the sensor suite during awake hours, and
completed on the mobile phone, 12 EMAs (i.e., self-reports)
daily. All participants were compensated monetarily for their
time and effort ($430 after successful completion).

Total Data Collected: We collected data from 61 participants.
The participants wore the sensor suite for a total of 2,766
hours (754 pre-quit and 2,012 post-quit).

Lapse Detection: For the mCrave model development, we
use the data collected (both sensor and self-report) during the
post-quit, but pre-lapse phase. This requires detection of first-
lapse events. Although participants undergo carbon monox-
ide (CO) testing each day and are asked to self-report their
lapse events, none of these are temporally precise enough
to precisely mark lapse occurrence in the sensor data (that
is collected at the rate of tens of hertz). Therefore, we use
a recently developed model (puffMarker) for detecting first
smoking lapse events from sensor data.

puffMarker [32] is a multi-sensor approach for pinpointing
the timing of first lapse in smoking cessation. puffMarker
uses data collected from two wearable sensors, breathing pat-
tern captured from a RIP sensor and hand gestures captured
using 6-axis inertial sensors (3-axis accelerometers and 3-axis
gyroscopes) worn on wrists. It uses inertial sensor data to
identify hand-to-mouth gestures and applies a machine learn-
ing model on the corresponding respiration data to detect
deep inhalation and exhalation pattern expected during smok-
ing. By using both of these sensing modalities, puffMarker
achieves good accuracy. When applied to 3 days of post-quit
data from 33 lapsers (from the participant pool of 61) [32], it
correctly pinpoints the timing of first lapse in 28 participants;
data from the other five was not available due to sensor-non-
wearing or lost data at the time of first lapse.

Participant Selection for mCrave Modeling: After applying
the puffmarker model on lapsers, a lapse time was established
for the lapsers. For mCrave, to ensure uniformity and suffi-
ciency of self-reported craving data (that is used as labels),
we selected those participants (from both lapsers and abstain-
ers) who had a minimum of 2 craving reports in each time
of day (morning, afternoon and evening/night) during their
abstinent (i.e., post quit, but pre-lapse) period. As a result,
16 participants were excluded either due to lack of report-
ing their craving level or because they lapsed before evening
of the first post-quit day. We use the remaining 45 partici-
pants, who contributed 1,557 self-reports of craving. Further,
if there was a missing stress inference at the minute adjacent
to a craving report, due to activity or data loss, we excluded
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Figure 1. Distribution of Stress Inferences across hours of a day. Num-
ber of participants = 45

that craving report from our analysis. We are thus left with
1,109 craving self-reports, of which 109 are used to initialize
the model and the remaining 1,000 for training and testing.

STRESS ASSESSMENT FROM SENSOR DATA
We use the cStress model for stress assessment. cStress uses
Electrocardiogram (ECG) and respiration to infer stress. This
model is applied to a set of features computed from each
minute of sensor data, whereby consecutive minutes are non-
overlapping. The model determines whether this minute’s
sensor readings correspond to a physiological response to
stressors. Features used in the model include 80th percentile
of R-R intervals and Heart Rate Variability (HRV) from ECG,
and mean inspiration-expiration ratio and median of stretch
from respiration [13]. This model was shown to classify
stress and non-stress minutes with 95% accuracy on inde-
pendent subject validation (different from training set) in lab
testing. It also showed that using HRV measure alone from
ECG, as has been the case in several prior works [22, 23],
leads to a significant drop in F1 score (0.56 vs. 0 .78). Fi-
nally, it was evaluated against self-report from independent
set of 20 participants who wore sensors for a week in the field
and was found to have a median F1 score of 0.71 [13]. Subse-
quently, it was also shown to have a median F1 score of 0.717
with self-reports collected from a different set of 38 partici-
pants who wore sensors for four weeks in the field [35]. This
stress model was recently validated on our smoking cessation
dataset and was found to have a median F1 score of 0.68 [33].

The cStress model, briefly described above, provides a con-
tinuous inference of stress, scaled to be between 0 and 1, for
every 1-minute of sensor data. This time series of 1-minute
probability-like measures of stress, for a particular partici-
pant, is termed throughout the rest of the paper as “stress
likelihood”. Figure 1 shows the hourly distribution of stress
inferences of an awake day across all participants.

ASSOCIATION OF TIME OF DAY, STRESS, AND CRAVING
DURING ABSTINENCE
Here we describe two hypotheses and support them with sta-
tistical tests on our data. The hypotheses provide key insights
to the construction of the craving estimation model. Figure 2
provides an overview of the analysis structure.

Craving likelihood based on hour (time) of day



Hours of day (T1,T2…,Tn)

Likelihood of craving HIGH 
(Ti)

Stress Likelihood 
associated with High 

Craving (STi
H)

Stress Likelihood 
associated with Low 

Craving (STi
L)

Likelihood of craving LOW 
(Tj,j≠i)

Stress Likelihood 
associated with High 

Craving (STj
H)

Stress Likelihood 
associated with Low 

Craving (STj
L)
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A.2

B.1
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Figure 2. Analysis of Hour (time) of day, craving, and physiological
stress.

Name Description

Ti
High Craving Likelihood Hour (High Vulnerable
Hour)

Tj
Low Craving Likelihood Hour (Low Vulnerable
Hour)

STi

H
Stress likelihood associated with self-reported
high craving during high vulnerable hour

STi

L
Stress likelihood associated with self-reported
low craving during high vulnerable hour

S
Tj

H
Stress likelihood associated with self-reported
high craving during low vulnerable hour

S
Tj

L
Stress likelihood associated with self-reported
low craving during low vulnerable hour

Table 1. Variables and parameters

Self-reported craving data has been collected during the
awake hours of the participants. Participants respond to as-
sessments containing a craving item on a Likert scale of 1-6
prompted at random times in a day. We analyze the self-
reported craving assessments (1,557 self-reports) of 45 partic-
ipants. Individual differences in self-reported craving ratings
affect the comparison of inter-individual ratings. To over-
come this challenge, we compute a z-score transformation of
the craving ratings for each participant pi, separately. For par-
ticipant pi, we compute the mean, µi and standard deviation,
σi of ratings of all the craving assessments reported by that
participant. Now, for craving assessment cij of participant pi,
we compute the z-score ẑij as,

ẑij =
cij − µi
σi

, i = 1, 2, ..., n and j = 1, 2, ..., k,

where k is the total number of craving assessments for partic-
ipant pi and n = 45 is the total number of participants.

Craving ratings with z-score greater than 0 are marked as
high craving episodes and those with z-score less than 0 are
marked as low craving episodes. We observe that during ab-
stinence, craving is lower during morning, with mean craving
z score of -0.132 (p(C) = 0.4511), craving increases during
the afternoon, with mean craving z score of 0.033 (p(C) =
0.533), and further increases during the evening, with mean
craving z score of 0.106 (p(C) = 0.545). We find that craving
1p(C) refers to probability of high craving episodes.
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Figure 3. Total number of self-report assessments during hours of day
across all participants. Number of participants, n = 45
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Figure 4. Craving distribution across hours of a day. Hours with High
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during the afternoon (n = 178) is significantly greater than in
the morning (n = 404) (p = 0.024 obtained using one-tailed
Wilcoxon rank-sum test). Also, craving during the evening (n
= 527) is significantly greater than in the morning (n = 404)
(p < 0.0001 obtained using one-tailed Wilcoxon rank-sum
test), however, there is no significant difference in craving
during evening (n = 527) and afternoon (n = 178) (p = 0.489
obtained using two-tailed pairwise Wilcoxon rank-sum test).
Our finding agrees with that reported in [26] on different data.

We further estimated the distribution of normalized self-
reported craving episodes during each awaking hour (T8,
T9,...,T22, represent 15 hours of awake day, where T9 repre-
sents the hour of day greater than equal to 9:00 and less than
10:00), across all the participants. Figure 3 illustrates the to-
tal number of self-report assessments during each hour of a
day. We compute the craving likelihood, as the proportion of
high craving episodes reported in each hour,

p̂c =
total number of assessments reported as high craving

total number of self-reported assessments

Now, prior to classifying each hour of a day as high or low
craving likelihood hour, we need to know the level of pre-
cision for the expected craving likelihood in each hour. We
used the bootstrap method (random resampling with replace-
ment) [10] in order to obtain mean and standard error for
craving likelihood in each hour. We computed the 95% con-
fidence interval (CI) of craving likelihood in each hour. We
marked the set of hours of a day, as high craving likelihood



hours, Ti, (see Table 1) where both the upper and lower limits
of 95% CI of craving likelihood, are greater than 0.5 (indicat-
ing majority voting). On the other hand, we marked the set
of hours of a day as low craving likelihood hours, Tj (j 6= i),
(see Table 1) where both the upper and lower limits of 95%
CI of craving likelihood are less than or equal to 0.5. Figure 4
illustrates the distribution of reported craving across all par-
ticipants during hours of a day. We observe that the hours of
day when craving likelihood is high are,

Ti = [T14, T16, T17, T19, T20, T22]

Similarly, hours of day when craving likelihood is low are,

Tj = [T8, T9, T10, T11, T12, T13, T15, T18, T21]

Shown in Figure 2, the hours of a day is divided into hours Ti
when craving likelihood is high (red line marked as A), and Tj
when craving likelihood is low (green line marked as B). The
hours of day with high craving likelihood (Ti) are referred to
as High Vulnerable hours; those with low craving likelihood
(Tj) are referred to as Low Vulnerable hours (see Table 1).

Physiological Stress and Craving
Across all participants (n = 45), we compute the stress like-
lihood at the nearest minute adjacent to each craving self-
report. As described previously, all the 1,109 craving self-
reports selected for analysis have a stress inference at the
minute adjacent to the craving report. Next, we group the
craving reports and their associated stress likelihood accord-
ing to hours, Ti (see Table 1) and hours Tj (see Table 1).

We hypothesize that physiological stress response is asso-
ciated with craving during the smoking abstinence period,
but, not always. We believe that during specific times of a
day, high stress response may be associated with high crav-
ing (e.g., when participants become aware of the thought that
they will not be able to smoke anymore, or under influence
of smoking cues like alcohol), however, during other times
stress response may be elevated due to other reasons (e.g.,
busy working in order to meet a deadline).

Following are the two alternate hypotheses,

(H01) During the hours (or times) of a day, Ti when partic-
ipants are highly vulnerable, the stress likelihood associated
with high craving (denoted as, STi

H in Figure 2, A.1) is signif-
icantly greater than the stress likelihood associated with low
craving (denoted as, STi

L in Figure 2, A.2).

(H02) During the hours (or times) of a day, Tj when partici-
pants are not highly vulnerable, there is significant difference
between the stress likelihood associated with high (denoted
as, STj

H in Figure 2, B.1) and low craving (denoted as, STj

L in
Figure 2, B.2).

We performed two statistical tests in order to provide a con-
vincing rationale behind the above hypotheses.

First: To assess H01, we performed a two sample right tailed
Wilcoxon rank-sum test for STi

H and STi

L (see Table 1) with
n = 269 and n = 202, respectively. Interestingly, we
found that STi

H is significantly greater than STi

L (p = 0.012).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

High Craving Low Craving High Craving Low Craving

St
re

ss
 L

ik
el

ih
oo

d

High Vulnerable Hours Low Vulnerable Hours

Figure 5. Median Stress likelihood associated with self-reported high
craving is significantly greater than that associated with self-reported
low craving during high vulnerable hours (marked with the star), how-
ever there is no significant difference between Median Stress likelihood
associated with self-reported high craving and that associated with self-
reported low craving during low vulnerable hours
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Figure 6. Median Stress Likelihood associated with self-reported high
craving (red) and self-reported low craving (green) during high vulnera-
ble hours of day. Median Stress Likelihood associated with high craving
(red) significantly greater than that associated with low craving (green)

We observed that median of STi

H samples is 0.131 (mean =
0.196±0.193) and median of STi

L samples is 0.1 (mean =
0.159±0.176). Left half of Figure 5 shows the comparison
between them. In order to assess H02, we performed a two
sample two tailed Wilcoxon rank-sum test for STj

H and STj

L
(see Table 1) with n = 295 and n = 343, respectively.
We found that STj

H and S
Tj

L are not significantly different
(p = 0.229). We observed that the median of STj

H is 0.105
(mean = 0.167±0.172) and the median of STj

L is 0.092 (mean
= 0.152±0.161). The right half of Figure 5 shows the com-
parison between them. Interestingly, in both cases, the mean
stress likelihood is significantly greater than the median stress
likelihood. This can be explained by the fact that stress like-
lihood follows a right-skewed beta distribution [35].

Second: The, number of self-reports in each hour is not the
same (mean = 70.125±27.959). Consequently, the result of
Wilcoxon rank-sum test can be biased. Hence, we performed
a second test, where we first computed the median stress like-
lihood associated with high and low self-reported craving in
each hour of a day. Next, in order to assess H01, we per-
formed a right tailed pairwise Wilcoxon sign-rank test for me-
dian of STi

H and median of STi

L in each high vulnerable hour,
n = 6 pairs. We found that median of STi

H is significantly
higher than the median of STi

L (p = 0.015). Figure 6 illus-
trates the samples used in this test. In order to assess H02, we
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Figure 7. Median Stress Likelihood associated with High craving (red)
and low craving (green) during low vulnerable hours. No significant dif-
ference between Median Stress Likelihood associated with high craving
(red) and that associated with low craving (green)

performed a two sided pairwise Wilcoxon sign-rank test on
the median of STj

H and the median of STj

L in each low vulner-
able hour, n = 9 pairs. We found that the median of STj

H and
the median of STj

L are not significantly different (p = 0.945).
Figure 7 illustrates the samples used in this test.

THE MCRAVE MODEL
In this section, we describe our proposed Conditional Ran-
dom Fields model, capable of inferring the probabilities of
high craving continuously on a minute-by-minute basis, over
a span of an entire day, provided we know the minute-level
stress likelihoods over the course of the same day. Condi-
tional Random Fields (CRFs) is a well-established and highly
flexible class of graphical models for defining probability dis-
tributions over sequences of inter-dependent categorical ran-
dom variables, conditioned on some observed evidential data.

To apply CRFs to our problem, we first define a se-
quence of random output variables C = {C(i) ∈
{−1: low craving,+1: high craving}|i = 1 . . . n}, which
mark the binary craving levels for all n recorded minutes of
the given day. The observed evidential data made available to
the model consist of previously defined p̂c(t)|t=8...23, which
are a time series of non-day-specific hourly craving likeli-
hoods spanning hours from 8:00 (8AM) to 23:00 (11PM), and
Sz(i)|i=1...n, which are a time-series of standardized minute-
level stress likelihoods, produced by standardizing, i.e., sub-
tracting the daily mean and dividing by the daily standard
deviation, the output of the cStress model. The standard-
ization is important for the sake of producing a population-
wide model, which is robust in the face of day-specific differ-
ences in baseline mean and standard deviation of stress like-
lihoods. The model defines the joint conditional distribution
Pθ(C|p̂c, Sz). Once the parameters θ of this distribution are
learned, we can use the model to infer the marginal probabil-
ities of high craving for every minute of the day.

The key advantage of CRFs is their ability to use salient fea-
tures that target the complex patterns and relationships that
are expected to exist between the output variables C(i) and
the evidential data p̂c, and Sz . The ability to use these features
can make CRFs a better choice in a supervised learning set-
ting than such generative models as Bayesian Networks. Like
Bayesian Networks, however, CRFs can also model structural

patterns and probabilistic dependencies between output vari-
ables, which gives them an edge in structural learning over
other feature-rich models, such as Support Vector Machines
and Logistic Regression.

The full conditional probability of a sequence of high/low la-
bels, defined by our CRF model, is:

Pθ(C|p̂c, Sz) =
1

Z(p̂c, Sz)
Ψ(C, p̂c, Sz) (1)

Ψ(C, p̂c, Sz) = exp

{
n∑
i=1

k∑
j

fj
(
C, p̂c, Sz, i

)}
(2)

The function Z above is the so-called partition function, and
it is used to normalize the numerator, and make sure that
Pθ(C|p̂c, Sz) is scaled between 0 and 1 and adds up to 1.
Computing Z presents one of the main challenges in CRF
inference, because it is defined as the sum of Ψ(C ′, p̂c, Sz)
over all possible C ′, of which there are exponentially many.
Luckily, in a linear-chain CRF, this sum can be computed ef-
ficiently using a dynamic program called Sum-Product Mes-
sage Passing (or Exact Belief Propagation).

The fj
(
C, p̂c, Sz, i

)
are the previously-mentioned feature

functions, which are divided into so-called ‘local’ features,
capturing the compatibility between observed evidential data
and the craving label at a single minute i, and ‘pairwise’ fea-
tures, which capture dependencies between successive crav-
ing labels. A positive output of fj signals an agreement be-
tween the variables and the evidential data, whereas a neg-
ative value is a sign of a disagreement. A value close to 0
indicates an ambiguous/low signal.

The performance of the model depends on the discriminative
power and generalizability of the feature functions encoded in
the model. Below, we list the specific ‘local’ and ‘pairwise’
features used in our model, which are inspired by the analyses
and hypotheses mentioned in the previous sections.

• f1
(
C, p̂c, Sz, i

)
= α1C(i)(p̂c(t)− 0.5)

Hour t contains minute i. This feature measures how well
a craving label at a minute level agrees with the likeli-
hood of craving at an hour level. If the output is posi-
tive, the sign of craving label C(i) agrees with the sign of
p̂c(t)−0.5, whereas a negative output indicates a disagree-
ment between them. The absolute value is the degree of
agreement/disagreement. The constant α1 weighs the role
of this feature/pattern in deciding the local compatibility of
C(i), relative to all other features.

• f2
(
C, p̂c, Sz, i

)
= α2C(i)(Sz(i) + γp̂c(t)− γ0.5)

This feature expands on the previous feature and measures
the three-way agreement among minute-level stress like-
lihood, hourly craving likelihood, and minute-level crav-
ing labels. Additionally, this feature is based on con-
struction of a linear separating boundary between the low
craving minutes (C(i) = −1) and high craving minutes
(C(i) = +1) in the space Sz(i)×p̂c(t), with p̂c(t) as the x-
axis. The boundary has an x-intercept at p̂c(t) = 0.5, and
is parametrized by the constant γ, denoting the slope of the
boundary. The relationship it encodes is that if the craving



likelihood is low, it requires a much higher likelihood of
stress to indicate high craving at that minute. On the other
hand, if there is already a high likelihood of craving during
that hour, it does not take as much stress to trigger high
craving.

• f3
(
C, p̂c, Sz, i

)
= α31{p̂c(t)>0.5}Sz(i)C(i)

This feature is based on the hypothesis H01, discussed in
the previous section, and detects instances of high stress
likelihood associated with self-reported high craving dur-
ing high vulnerable hours.

• f4
(
C, p̂c, Sz, i

)
=


β1 if C(i) = C(i+ 1) = −1
β2 if C(i) = −1, C(i+ 1) = 1
β3 if C(i) = 1, C(i+ 1) = −1
β4 if C(i) = C(i+ 1) = 1

This pairwise feature measures the compatibility scores for
all transitions of craving labels from minute to minute. For
example, β3 measures the compatibility of transitioning
from ‘high craving’ at minute i to ‘low craving’ at minute
i+ 1.

The constants αi, α2, α3, β1, β2, β3, β4, γ comprise the pa-
rameter vector θ, and they can be learned using supervised
learning via Maximum Likelihood Estimation, provided we
have a sequence of ground-truth labels for C. Luckily, these
weights can be learned even if we have ground-truth labels
for only a portion of the minutes, as is the case with EMA-
based sampling of self-reports throughout the day, by defin-
ing the partial likelihood of parameters given the sample of
ground-truth labels. We use a L2 regularized likelihood, to
improve the generalization and convergence characteristics
of the learning process. We use a regularization constant λ
to tune the role of regularization.

Once the model is trained, it can be applied to pro-
vide several different inferences. The inference that we
find to be most useful is the inference of P (Ci =
high craving|p̂c, Sz)|i=1...n — the marginal probabilities of
high craving for all minutes of the day. They can be com-
puted efficiently using an algorithm almost identical to the
one used to computeZ. These marginal probabilities are used
during validation of the model, enabling us to compute vari-
ous classification performance metrics, such as F1, accuracy
(hit-rate), Area-under-the-Curve (AUC), and others.

FINDINGS
In this section, we report the experimental results and findings
obtained with our proposed mCrave model. The only hyper-
parameter used during learning is the choice of the regular-
ization constant λ. To find the optimal value for this constant,
as well as to validate the model’s generalization performance
in a robust manner, we performed leave-one-participant-out
(LOPO) cross validation.

The training data consists of daily self-reported ground-truth
labels for 45 participants. In total, there are 1,000 ground-
truth craving labels over all days, 505 of them from the high
craving class, and 495 from low craving class. The LOPO
results are summarized below.

Craving estimation during High Vulnerable Hours (Ti)

Estimated by mCrave
High Craving Low Craving Total

A
ct

ua
l High Craving 222 (78.4%) 61 (21.6%) 283

Low Craving 77 (34.7%) 145 (65.3%) 222
Total 299 206 505

Table 2. Confusion Matrix for High Vulnerable hour. Overall Accuracy
is 72.9% (against base accuracy 56.4%) with kappa 0.429.

Figure 8. Receiver Operating Characteristic(ROC) curve

Out of the total number of craving ground-truth labels, 505
are during high vulnerable hours. Of these, 283 belong to
high craving class and 222 to low craving class. As Table 2
shows, the overall accuracy of classifying these craving self-
reports is 72.9%. Furthermore, the model attained a true pos-
itive rate of 78.4%, where positive class is high craving class,
and a true negative rate of 65.3% cases. The precision, re-
call, F1 score, and Area-Under-Curve (AUC) of the model
are 0.742, 0.784, 0.764 and 0.750, respectively.

Craving estimation during Low Vulnerable Hours (Tj )
On the other side, 495 ground-truth craving labels are during
the low vulnerable hours Of these, 225 belong to the high
craving class, and 270 to the low craving class. We obtained
an overall accuracy of 72.2%. From the confusion matrix in
Table 3, we found that the model attained a true positive rate
of 62.7% cases, and a true negative rate of 79.6% cases. The
model obtained a precision of 0.719, a recall of 0.627, an F1

score of 0.673 and Area-Under-Curve (AUC) of 0.722.

For comparison, the median F1 score of the cStress model is
0.68 [33] for continuous estimation of stress and its agree-
ment with self-reported stress in the field setting. As de-
scribed previously, the cStress model is based on extensive
prior works on stress and physiology, yet its accuracy is lim-
ited when comparing against self-report in the field setting,
due to wide variability and occassional inconsistencies in
self-reports. Therefore, the accuracy of craving estimation
is quite good for a first model, as its comparison is also with
self-reports collected in the field setting.

In addition to the confusion table, we plotted the ROC curves
for the LOPO results, comparing the low vulnerable and high
vulnerable curves side-by-side, as shown in Figure 8. We ob-
served that the performance of the model during high vulner-



Estimated by mCrave
High Craving Low Craving Total

A
ct

ua
l High Craving 141 (62.7%) 84 (37.3%) 225

Low Craving 55 (20.4%) 215 (79.6%) 270
Total 196 299 495

Table 3. Confusion Matrix for Low Vulnerable hour. Overall Accuracy
is 72.2% (against base accuracy 53.7%) with kappa 0.424.

Figure 9. Model performance metrics for High Vulnerable, Low Vulner-
able Hour, Baseline, Without Pairwise Feature

able hours is better than during low vulnerable hours (further
illustrated in Figure 9), which agrees with our hypothesis that
the high vulnerable hours are marked by a stronger connec-
tion between stress and craving, which in turn leads to better
classification of craving self-reports conditioned to stress.

Utility of the pairwise feature
As alluded to earlier, the fact that we can incorporate ‘pair-
wise’ features, targeting probabilistic dependency patterns
between successive craving labels, was a major factor in
choosing CRFs as our model. The decision to include these
pairwise features was based on the reasoning that high crav-
ing during a given minute is generally followed by high crav-
ing during the next minute, since craving dissipates gradu-
ally over time. Similarly, low craving during a minute is nor-
mally followed by low craving in the next minute. In order
to test this idea and assess the discriminative power of the
pairwise feature, we test our model after removing feature
f4
(
C, p̂c, Sz, i

)
. We observed that the model’s average per-

formance over the high and low vulnerable hours drops sig-
nificantly, as shown in Figure 9. This justifies our decision to
include these pairwise probabilistic dependency patterns.

Comparison to Baseline
Finally, since there does not exist any prior model for crav-
ing estimation to which we can compare the performance
of mCrave, we construct a likely candidate model. Since
stress is a significant component of the mCrave model, we
use cStress as a baseline. In other words, if the output of
stress model was used directly as a surrogate of craving, how
well will this model perform in comparison with our mCrave
model.

Figure 9 shows the performance of this baseline model. We
found that craving estimation directly from stress likelihoods
attained an accuracy of 54.6% with a kappa score of 0.069, F1

score of 0.532, recall of 0.479, and Area-Under-Curve (AUC)
of 0.484. In comparison, the mCrave model performed sig-
nificantly better (see Figure 9), which demonstrates the utility
of mCrave modeling.

DISCUSSIONS, LIMITATIONS AND FUTURE WORK
This work makes several interesting observations. First, it
showed that using only a few measures (i.e., stress and time
of day), it is feasible to estimate craving. Second, it showed
that stress, by itself, can’t be used as a surrogate of craving;
it must be used in conjunction with time of day in an appro-
priate model to produce a good estimate of craving. Third,
it showed that the accuracy of estimating craving does de-
pend on time of day, i.e., higher accuracy may be obtained
for high-vulnerable hours, when participants are more likely
to lapse.

Limitations. Since this work is a first step towards estimating
craving, it has several limitations that present exciting oppor-
tunities for future research in both the UbiComp and health
research communities.

First, since craving is a psychological construct, estimating
it from mobile sensor data is inherently difficult. Compli-
cating it further is the challenge of obtaining reliable labels
that can be used for training and testing of the model. Of-
ten, self-report is the only feasible label that can be obtained
conveniently from the field setting.

Whenever sensor data is used to model the perception of
a subjective phenomenon such as craving (especially at the
minute-level granularity), there are limits to the level of accu-
racy that can be achieved from such models. This is due to in-
herent variabilities in the self-report. In contrast to objective
phenomena such as physical activity, eating events, smoking
events, etc., for which accuracies in the upper nineties can be
expected, accuracy for subjective phenomenon modeling is
usually limited to seventies. This is because the consistency
among self-report items for the same construct are limited to
lower eighties. Therefore, a consistency score of 0.7 or above
among self-reported items are considered to be good [7]. In
particular, [33] found that consistency among self-reported
stress items was 0.76 in our dataset. The performance of our
mCrave model should be viewed from this perspective.

Second, our model uses only stress and time of day. But,
craving may be a result of other biological phenomena or due
to cue exposure. Nicotine deprivation throughout the night
may result in morning craving. Similarly, craving after lunch
may be habitual, situational, or biological. In other cases,
exposure to alcohol, seeing someone else smoking, smelling
smoke, seeing a cigarette pack, or reading a social media
message may trigger craving. Incorporating this information
in the model can potentially improve the model’s accuracy.
Hence, future smoking studies that incorporate other sens-
ing modalities to collect geolocation (from GPS), digital ex-
posure (from social media, calenders etc.), visual exposure
(from smart eyeglasses), detection of eating from hand ges-
tures (e.g., to know when lunch is over), etc. can assess the
utility of these new data sources in improving the estimation
of craving, especially in the low vulnerable hours.

Additionally, user demographics may be associated with
craving and smoking behavior. For instance, female smok-
ers show high craving reactivity to smoking-related cues rel-
ative to male smokers [31] while another EMA-based study



revealed that black smokers report greater levels of craving
during the day than white smokers [8]. These suggest that
more research is needed to carefully assess demographic in-
fluences on craving during abstinence.

Third, in this smoking cessation study, the duration of post-
quit was chosen to be 3 days. This is because the first 3
days are the most critical days in smoking cessation, which
captures the most intense withdrawal symptoms in abstinent
smokers. Majority of participants lapse during this period; in
our smoking cessation study, 53% lapsed in the first 3 days.
Since this was the first smoking cessation study with continu-
ous monitoring using physiological sensors (for stress assess-
ment) and smartwatches (for lapse detection), the duration of
the study was limited to ensure successful data capture in the
most vulnerable abstinence period.

Now that the feasibility of capturing both stress and detection
of smoking lapse from sensors in a real-life smoking cessa-
tion study has been established, longer studies can be pursued
in future that can include these and other sensors to capture
richer data sets. A longer study is likely to lead to new in-
sights and improvements in the craving estimation modeling.
It can be helpful in revealing several additional information
such as trends in craving as withdrawal symptoms recede (for
those who continue to abstain beyond the first 3 days).

Fourth, although we demonstrate feasibility of estimating
craving, the model is not perfect and is unlikely to be perfect
even in the future. It can both miss high-craving episodes as
well as detect false ones. This may be due to factors such as
errors/noise in the self-reported ground-truth craving labels,
errors in the stress time series, as well as confounding vari-
ables, such as location, food/drink intake and others. Even
with further improvements in the model, some inaccuracies
may be inherent due to use of machine learning modeling ap-
proaches (for example, the fact that we have only a sparse
sampling of ground-truth labels for all minutes of the day,
we train the model by partial likelihood maximization, which
may have played a role in lowering the model’s generaliza-
tion performance) and due to inherent between-person and
between-situation variabilities. Therefore, any intervention
delivery that are based on craving estimation models must
deal with these inaccuracies.

Fifth, even if craving can be estimated perfectly, smoking
lapse can sometimes occur without being preceded by crav-
ing, e.g., when offered cigarette by a friend, relative, or a
colleague. Therefore, not all smoking lapse episodes can be
prevented by intervening at all high-craving moments, which
itself may be infeasible if they are too frequent in the day.
What the model promises to do, instead, is to help prepare
an individual to better tolerate craving in the abstinence pe-
riod and increase the chances of remaining abstinent or delay-
ing lapse. Once an individual acquires sufficient self-efficacy
or tolerance to potent cues and biologically triggered craving
episodes, they may become more likely to remain abstinent.

Future Research. In addition to addressing limitations and
improving the model, this work presents other opportunities

for future research. A major research direction is to incorpo-
rate the mCrave model in smoking cessation interventions.

First, majority of interventions for smoking cessation are de-
veloped for delivery upon request, or at set times. These in-
terventions may need to be revised or adapted for delivery in
response to sensor-detected craving episodes.

Second, to become widely useful in the society, the clinical
utility of mCrave model in the management of craving should
be established by developing and evaluating sensor-triggered
just-in-time mobile intervention via randomized clinical tri-
als that can be triggered based on the estimation of craving.
Issues to be considered include the interruption-like nature
of these interventions, inaccuracy of sensor detections, op-
portunity for personalization by making use of sensor data to
estimate user’s availability [34], and others.

Third, methods need to be developed to deal with the high-
frequency of sensor outputs (i.e., each minute) to find the
most opportune moments to intervene. Some recent research
in the context of stress intervention provides some initial
foundations for this direction [35].

Fourth, effective visualizations could be developed to help the
users visualize their craving patterns and gain useful insights
into the associated contexts that might increase or decrease
their craving during abstinence.

CONCLUSION
This work presented a computational model to estimate crav-
ing continuously from mobile physiological sensors. Use of
an explainable model in mCrave helps retain the insights re-
garding the phenomena and get confirmation from domain
experts. Doing so is critical to bridging the gap in such multi-
disciplinary works. Although numerous improvements can be
made to improve the sensitivity and specificity of the model
(e.g., by incorporating geoexposure, visual exposure, and dig-
ital exposure data), establishing the feasibility of automati-
cally estimating craving opens up numerous exciting research
opportunities with significant potential to improve health and
wellness. Development of appropriate interventions (poten-
tially using assisting technologies such as smartphones, wear-
ables, smart clothing, etc.) that are suitable for delivering
at vulnerable moments can help build tolerance and improve
smoking cessation success rates. Since craving plays an im-
portant role in several impulsive behaviors such as overeating,
drinking, and drug use, research can be pursued to estimate
craving for these behaviors as well.
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