
iShadow: Design of a Wearable, Real-Time Mobile Gaze
Tracker

Addison Mayberry
University of Massachusetts

Amherst
140 Governor’s Drive
Amherst, MA 01003

amayberr@cs.umass.edu

Pan Hu
University of Massachusetts

Amherst
140 Governor’s Drive
Amherst, MA 01003

panhu@cs.umass.edu

Benjamin Marlin
University of Massachusetts

Amherst
140 Governor’s Drive
Amherst, MA 01003

marlin@cs.umass.edu
Christopher Salthouse
University of Massachusetts

Amherst
100 Natural Resources Rd.

Amherst, MA 01003
salthouse@ecs.umass.edu

Deepak Ganesan
University of Massachusetts

Amherst
140 Governor’s Drive
Amherst, MA 01003

dganesan@cs.umass.edu

ABSTRACT
Continuous, real-time tracking of eye gaze is valuable in a vari-
ety of scenarios including hands-free interaction with the physical
world, detection of unsafe behaviors, leveraging visual context for
advertising, life logging, and others. While eye tracking is com-
monly used in clinical trials and user studies, it has not bridged the
gap to everyday consumer use. The challenge is that a real-time eye
tracker is a power-hungry and computation-intensive device which
requires continuous sensing of the eye using an imager running at
many tens of frames per second, and continuous processing of the
image stream using sophisticated gaze estimation algorithms. Our
key contribution is the design of an eye tracker that dramatically re-
duces the sensing and computation needs for eye tracking, thereby
achieving orders of magnitude reductions in power consumption
and form-factor. The key idea is that eye images are extremely re-
dundant, therefore we can estimate gaze by using a small subset
of carefully chosen pixels per frame. We instantiate this idea in
a prototype hardware platform equipped with a low-power image
sensor that provides random access to pixel values, a low-power
ARM Cortex M3 microcontroller, and a bluetooth radio to commu-
nicate with a mobile phone. The sparse pixel-based gaze estimation
algorithm is a multi-layer neural network learned using a state-of-
the-art sparsity-inducing regularization function that minimizes the
gaze prediction error while simultaneously minimizing the number
of pixels used. Our results show that we can operate at roughly
70mW of power, while continuously estimating eye gaze at the rate
of 30 Hz with errors of roughly 3 degrees.

Keywords
eye tracking; neural network; lifelog

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’14, June 16–19, 2014, Bretton Woods, New Hampshire, USA.
Copyright 2014 ACM 978-1-4503-2793-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594368.2594388 .

Categories and Subject Descriptors
H.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

1. INTRODUCTION
An important aspect of on-body sensing is tracking the eye and

visual field of an individual. Continuous real-time tracking of the
state of the eye (e.g. gaze direction, eye movements) in conjunc-
tion with the field of view of a user is profoundly important to un-
derstanding how humans perceive and interact with the physical
world. Real-time tracking of the eye is valuable in a variety of sce-
narios where rapid actuation or intervention is essential, including
enabling new “hands-free" ways of interacting with computers or
displays (e.g. gaming), detection of unsafe behaviors such as lack
of attention on the road while driving, and leveraging visual context
as a signal of user intent for context-aware advertising. Continuous
eye tracking is also useful in non real-time applications including
market research to determine how customers interact with prod-
uct and advertising placement in stores, and personal health, where
the state of the eye provides a continuous window into Parkinson’s
disease progression, psychiatric disorders, head injuries and con-
cussions, and others.

While our understanding of the human eye and gaze has grown
through decades of research on the topic [6, 9], eye tracking re-
mains limited to controlled user studies and clinical trials, and has
not bridged the gap to daily consumer use. The central challenge is
that the sensing and processing pipeline is extremely complex: the
eye-facing imager alone requires continuous operation of a camera
at tens of frames per second, and compute-intensive image pro-
cessing for each frame [2, 13, 24]. Unfortunately, these compu-
tational demands are very far from what can be accomplished on
low-power microcontrollers and resource-limited embedded plat-
forms. In addition, there are complex camera placement consider-
ations and form-factor demands, making the eyeglass design much
more intricate. In all, addressing the myriad technical and design
challenges of wearable gaze tracking is a daunting task.

To understand the design challenges, consider an eye tracker
equipped with two cameras, one facing the eye and one facing the
external world. A VGA-resolution eye facing imager sampled at
30Hz generates a data rate of roughly 4 Mbps. Continuous real-

time processing of such an image stream would require compu-
tational capability and memory comparable to a high-end smart-
phone, making the eye tracker both bulky and power hungry. An
alternative design might be to wirelessly stream data from the eye
tracker to a smartphone for leveraging the phone or cloud-based
computational resources. However, the bandwidth requirements
for such streaming is substantial — most low-power radios cannot
support the demanding data rates of eye trackers, and streaming
via WiFi is power-hungry and would greatly limit the lifetime of
such a device. Perhaps as a result, many state-of-art eye trackers,
such as the Tobii glass [24], operate as data recorders and contin-
uously writes data to a disk that the subject carries in their pocket.
(Google Glass, while not equipped with an eye tracker, has similar
challenges - in continuous video capture mode, the device lasts for
only a few hours.)

We argue that the current approach is fundamentally flawed —
existing systems separate image acquisition from the eye state pro-
cessing, and as a consequence are unable to leverage a variety of
optimizations that are possible by a more holistic approach that
uses application-driven sampling and processing. Consider, for ex-
ample, recently available smartphones such as the Samsung Galaxy
S IV, which track gaze for eye scrolling; here, the entire image
is acquired from the camera, after which it is processed through
computer vision techniques to estimate gaze direction. The thesis
of our work is that by joint optimization of pixel acquisition and
gaze estimation, we can enable real-time, continuous eye tracking
while consuming only milliwatts of power, thereby enabling real-
time continuous gaze based applications.

At the heart of iShadow is a simple idea: individual eye-facing
images are extremely redundant, and thus it should be possible to
estimate gaze location using only a small subset of pixel values in
each frame. In other words — we can leverage knowledge that the
imager is looking at the eye, and that the most useful information
for gaze tracking is where the iris is located within the eye. Thus,
we can estimate gaze coordinates accurately as long as we can ex-
tract the location of the iris and sclera of the eye at low power.

Sparse sampling of pixels has a ripple effect on almost all design
choices in our system. From a resource perspective, fewer pixels
per frame imply less memory needs, and fewer image processing
instructions per frame thereby enabling the entire gaze estimation
pipeline to execute on a simple microcontroller. From a latency per-
spective, fewer pixels implies lower latency for image acquisition
and gaze estimation, making it possible to achieve real-time high
rate gaze computation despite limited processing capability. From a
power perspective, we subsample pixels directly at the imager, and
not after acquiring the image, thereby reducing power consumption
for image acquisition as well as processing. Fewer pixel acquisi-
tions and less processing translates to less energy consumed per
frame capture and gaze computation, which enables longer term
operation.

The design of a sparse acquisition-based gaze tracking system
presents substantial challenges that we address in this work. First,
imagers that operate at the milliwatt power levels need to sacrifice
pixel quality for power, hence an important question is whether we
can achieve high accuracy despite operating with low quality im-
agers. Second, we ask whether we can design a gaze estimation al-
gorithm that provides a graceful resource-accuracy tradeoff, where
the accuracy of gaze estimation gracefully degrades as the energy
budget reduces. Third, the computational demands of gaze tracking
are often substantial — for example, several gaze estimation algo-
rithms require processing of the eye image to detect the iris and
identify its boundary, which requires processing that is consider-
ably higher than what can be accomplished with a microcontroller.

Thus, we need to understand how to reduce the processing needs to
enable real-time gaze estimation while operating on platforms with
tens of kilobytes of memory and no floating point units.

The main contributions of our work are the following.

• First, we design a multi-layer neural network-based point-
of-gaze predictor that uses offline model training to learn a
sparse pixel-based gaze estimation algorithm. A key novelty
of this work is the use of a state-of-the-art sparsity-inducing
regularization function for identifying pixel subsets[26]. We
show such an approach can reduce pixel acquisition by 10×
with minimal impact on gaze prediction accuracy.

• Second, we design a real-time gaze estimation algorithm that
implements the model learned by the neural network on a
prototype computational eyeglass platform equipped with a
low-power microcontroller and low-power greyscale cam-
eras with random access capability. We show that our sys-
tem can operate at frame rates of up to 30Hz with gaze errors
of roughly 3 degrees, while executing in real time and at a
power consumption of 72 mW.

• Third, we show that our methods can be easily calibrated
to a new individual with a calibration dataset that is only
one minute long, and without requiring changes to imager
placement or adjustment of our hardware prototype. Our user
study with ten users shows that, once calibrated, our system
works robustly across individuals.

2. BACKGROUND AND RELATED WORK
The gaze tracking problem has a long history and multiple sens-

ing modalities have been developed to address it [25]. In this work,
we are specifically interested in gaze tracking using a video stream
of eye images, an approach referred to as video oculography. We
highlight the distinctions between video-based gaze tracking sys-
tems that are most relevant to our work in this section and refer
readers to the surveys by Young et al. [25], Morimoto et al. [14]
and Hansen et al. [7] for further details and references. We orga-
nize our review around three important distinctions between gaze
tracking systems: (1) whether the hardware system is remote or
wearable (typically head mounted), (2) whether the point-of-gaze
estimation problem is solved offline or in real time, and (3) the cat-
egory of algorithm used to solve the gaze inference problem.

Remote vs Wearable Eye Trackers.
Gaze tracking has traditionally been studied and applied in the

remote tracking setting [25]. The subject sits facing one or more
cameras that record video of the subjects eyes. The subject typi-
cally performs a task like reading or viewing images or video. The
captured eye images are then used to infer the subject’s point of
gaze, giving information about what they were attending to while
performing the different steps of a task. In early remote systems,
chin-rests or other restraints were used to ensure the subject’s head
was completely motionless relative to the camera system. The gaze
inference problem was also solved completely offline.

Subsequent advances have led to gaze tracking systems that can
reliably infer gaze direction in real time while allowing subjects a
much more comfortable range of motion while seated [5, 1, 18].
Modern instantiations of these techniques use either built-in cam-
eras on laptops and smartphones to estimate gaze direction, or use
additional add-on hardware [23] that provides more accuracy for
gaze tracking. These approaches are particularly useful for mea-
suring user engagement for online ads, and gaze-based gaming or

computer interaction. While very useful, the gaze tracking hard-
ware remains static, and doesn’t provide continuous gaze informa-
tion in natural environments when the user is not interacting with a
computing device.

In recent years, more eye trackers are being used in a mobile con-
text. The OpenEyes project is a closely related effort to ours at the
hardware layer. It involved the development of an open wearable
hardware system for recording eye movements as well as associ-
ated algorithms for gaze prediction [13]. While the camera system
was also an eyeglass form factor device, it was tethered to a lap-
top computer worn in a backpack. Rantanen et al. also presented
an eyeglass-form-factor tracking device, intended for HCI purposes
with disabled users [16]. Their system similarly requires the pres-
ence of a computer, though it uses a wireless connection as opposed
to a tether. The Aided Eyes project is functionally the most similar
system to ours [12]. Their tracking device does some local pro-
cessing, including gaze prediction, but is a bulky system and there
is no emphasis on reducing power consumption. Their tracker uses
photodiodes for tracking the limbus, yielding an error of 5◦.

Current commercially available wearable systems remain pro-
hibitively expensive and in most cases are simply video recording
devices with no real-time processing capabilities on-board. For ex-
ample, the ASL MobileEye XG [2] includes an eye glass frame
with eye and outward facing cameras, but is tethered to a record-
ing device that can store or transmit data wirelessly. The system
records video at 30Hz. While the eyeglass frame and camera sys-
tem weigh only 0.17lbs, the recording device weighs 1.7lbs and
is 7.56 x 4.65 x 2.0 inches in size. The battery life in recording
mode is limited to 3 hours and no data processing is done on-board
the device. The recently released Tobii Glasses [24] also include
an eyeglass form factor camera system tethered to a recording de-
vice. The Tobii Glasses also record video at 30Hz with a combined
0.17lbs eyeglass and camera weight. The recording device weighs
0.44lbs and is 4.84 x 3.27 x 1.3 inches in size. However, the battery
life in recording mode is limited to only 70 minutes, and no data
processing is done on-board the device.

Near-Infrared vs Visible Light.
Commercial eye trackers largely use Near-Infrared (NIR) illu-

mination of the eye to make the pupil appear darker or lighter [14].
The advantage of NIR illumination is that it creates specific reflec-
tion patterns on the cornea and pupil of the eye, and these reflec-
tions can be captured by one or two imagers. The resulting images
can be processed through advanced image processing techniques
to robustly extract various aspects of the state of the eye. The dis-
advantage of this approach is that the device is considerably more
complex, and requires an illuminator and reflector to direct the NIR
light into the eye, in addition to one or more imagers. This makes
the eyeglass design a much more complex engineering problem,
with a variety of active and passive elements mounted at different
points on the frame. While visible light based eye trackers have
been proposed in the past (e.g. OpenEyes), these are far less ad-
vanced than the NIR-based counterparts, perhaps because they are
perceived as being much less precise and robust to lighting condi-
tions.

While the use of NIR illumination certainly improves image qual-
ity and robustness, we argue for an approach that sacrifices some
precision for broader utility and applicability. In comparison to
NIR-based eyeglasses, a simple visible-light camera integrated with
a passive reflector or polarized glasses to reflect the image of the
eye is far easier to mount on a regular pair of spectacles. We also
argue that the loss of precision may be mitigated through leverag-

ing advances in machine learning techniques to deal with a variety
of noise sources in a more robust manner.

Shape-based vs Appearance-based Gaze Estimation.
In terms of gaze tracking algorithms, three primary approaches

have been explored in the literature. They are commonly referred to
as shape-based, appearance-based and hybrid algorithms [7]. The
shape-based approach uses features of the eye image to fit an ellipse
to the boundary between the pupil and the iris [7]. The downside
of this approach is that it works best with Near-Infrared (NIR) il-
lumination sources, which, through their positioning relative to the
camera, can make the pupil appear brighter or darker, thereby mak-
ing it easier to detect the boundary [14]. When using visible light,
shape-based techniques are harder to use since the boundary of the
pupil is harder to detect.

Appearance-based gaze tracking algorithms attempt to predict
the gaze location directly from the pixels of the eye image with-
out an intermediate geometric representation of the pupil. This ap-
proach essentially treats the gaze inference problem as a regression
problem where the inputs are the pixels of the eye image and the
outputs are the vertical and horizontal components of the point of
gaze in the outward facing image plane. Due to the generality of
the gaze inference problem when formulated in this way, predic-
tions can be based on essentially any multivariate regression ap-
proach. Two prominent approaches used in the gaze tracking lit-
erature are multi-layer neural networks [3] and manifold-based re-
gression [21]. This approach is preferable in our scenario, since it
is more robust to artifacts observed in a visible-light based image
stream of the eye. While we leverage an appearance-based tech-
nique, our primary contribution at the algorithmic level is the de-
velopment of sparse appearance-based models for gaze prediction
that optimize gaze estimation accuracy while minimizing the pixel
sampling costs.

3. iShadow OVERVIEW
In this section, we provide a brief overview of the iShadow sys-

tem. The first step in using iShadow is calibration, where a user
looks at a few points on a monitor while keeping their head rela-
tively steady, in a manner similar to commercial eye trackers. Dur-
ing this calibration phase, iShadow captures a full image stream
from the eye-facing and outward-facing imager, and downloads this
data to a computer either via USB or Bluetooth.

The second step is the neural network based sparse pixel selec-
tion algorithm. In this stage, the learner divides the calibration
dataset into training and testing sets, and sweeps through the reg-
ularization parameters to learn a set of models that correspond to
different gaze prediction accuracies. Each model specifies both the
set of pixels that need to be acquired and the weights on the pixels
to use for the activation function that predicts gaze coordinates. De-
pending on the power constraints of the platform and the accuracy
needs of the application, the appropriate model can be downloaded
to the iShadow platform for real-time operation.

The third step is the run-time execution of the model that is
downloaded onto the iShadow platform. The run-time system ac-
quires the appropriate pixel set and executes the non-linear weighted
sum to predict gaze coordinates in real time.

Once gaze coordinates are obtained from the eye-facing imager,
they can be used in different ways depending on application needs.
For example, it could be used to detect rapid saccades (i.e. rapid
eye movements) which correspond to an event in the external field
of view of the user. When a saccade is detected, the outward facing
imager can be triggered to capture an image or video of the event
that could have caused the saccade. Alternately, gaze coordinates

pixels

gaze
coordinates

Neural Network-based
Gaze Predictor

Data collection for
model learning

iShadow platform

offline training download model

Figure 1: iShadow overview: A user wears the eyeglass and collects a few minutes of calibration data by looking at dots on a computer
screen. The calibration data is downloaded from local storage on the eyeglass, and the neural network model is learnt offline. An appropriate
model can then be uploaded to the eyeglass for real-time gaze tracking.

could be used to detect fixation and use this information to decide
when to trigger the outward facing camera.

4. GAZE TRACKING ALGORITHM
In this section we describe our framework for energy aware gaze

tracking. At a high level, the idea involves setting up the prediction
problem as a neural network where the inputs are the pixel val-
ues obtained from the imager, and the output is the predicted gaze
coordinates. A unique aspect of our work is that in addition to de-
termining the parameters of the neural network, we also determine
a smaller subset of pixels to sample to reduce power consumption,
while minimizing the loss in gaze prediction accuracy.

To enable subset pixel selection, the neural network learning al-
gorithm uses a regularizer that penalizes models that select more
pixels; thus, the optimization involves two terms: a) an error term
that captures how well the algorithm predicts gaze coordinates,
and b) a penalty term that increases with the number of pixels se-
lected. This optimization is done offline using numerical optimiza-
tion methods, and the parameters are hard-coded into the micro-
controller for real-time execution. Thus, the eyeglass is not making
any real-time decision about which pixels to sample, or how to map
from pixel values to gaze output — it is simply computing a func-
tion of the subsampled pixels based on hard-coded parameters from
the learnt neural network model. The online operation is therefore
lightweight and easy to optimize in hardware. We describe this
process in more detail in the rest of this section.

Model Specification.
Our base gaze prediction model is a feed-forward neural network

as shown in Figure 2 [4]. The input layer is a D ×D array of val-
ues I representing the eye-facing image. The pixel at row i and
column j is given by Iij . The desired output of the system is the
gaze coordinates in the outward facing image plane (X,Y). The
hidden layer of the model consists of K hidden units Hk. The
model includes input-to-hidden parametersW IH

ijk for each pixel lo-
cation (i, j) in the eye-facing image and each hidden unit Hk; a
hidden unit bias parameter BH

k for each hidden unit Hk; hidden-
to-output parameters WHO

kx and WHO
ky mapping between hidden

unit Hk and the horizontal and vertical gaze coordinates (X,Y);
and output bias parameters BO

x and BO
y for the horizontal and ver-

tical gaze coordinates (X,Y). The hidden units use a standard
hyperbolic tangent (tanh) activation function. The output units use

H1

H2

HK

X

Y

Input
Image Hidden Layer

Output
Layer

Figure 2: Illustration of the the neural network gaze prediction
model.

linear activations. The mathematical formulation of the model is
given below.

X̂ = BO
x +

K∑
k=1

WHO
kx Hk (1)

Ŷ = BO
y +

K∑
k=1

WHO
ky Hk (2)

Hk = tanh

(
BH

k +

D∑
i=1

D∑
j=1

W IH
ijk Iij

)
(3)

Model Learning.
Given a data set D = {In, Xn, Y n}n=1:N consisting of N eye

images In with corresponding gaze coordinates (Xn, Y n), our
goal is to learn the complete set of neural network model param-
eters θ = {W IH ,WHO, BH , BO}. We learn the model param-
eters by minimizing a regularized empirical loss function between
the neural network’s predicted outputs (X̂n, Ŷ n) and the true out-
puts (Xn, Y n) [4]. In this work, we use squared error as the loss
function. The objective function F(θ|D) is shown below for an ar-
bitrary regularization function R(θ) with regularization parameter
λ.

F(θ|D) =
N∑

n=1

(X̂n −Xn)2 + (Ŷ n − Y n)2 + λR(θ) (4)

The objective functionF(θ|D) cannot be analytically minimized
with respect to the model parameters θ, so numerical methods are
required. The gradients of the model parameters with respect to the
loss can be efficiently computed using the standard backpropaga-
tion algorithm [17]. For standard, smooth regularization functions
like the two norm squared ||θ||22, the gradients of the regulariza-
tion function R(θ) are also easy to obtain. The base model can be
learned using any numerical optimizer such as the limited memory
BFGS algorithm [15].

Pixel Subset Selection.
Given that the eye-facing images are extremely redundant, the

central hypothesis of this work is that we can drastically sub-sample
the eye facing images while preserving much of the accuracy.

The problem of choosing an optimal set of pixel locations is a
subset selection or feature selection problem [8]. We refer to the
pixels actually selected as active pixels. We can represent the set of
active pixel locations using a binary mask A where Aij = 1 if the
pixel is active and Aij = 0 if the pixel is not active. Given such
an active pixel mask A, we can modify our neural network to base
its prediction on the active pixel locations only. In Figure 2, this
would correspond to simply removing all of the edges between the
inactive pixels and the hidden units. The computation and commu-
nication complexity of image acquisition and gaze estimation are
both linear in the number of active pixels in our framework. This
means that we should expect a linear decrease in the energy cost
of both image acquisition and prediction as the number of active
pixels decreases.

To select a smaller active pixel set, we use a state-of-the-art
sparsity-inducing group-`1 regularization function [26]. It is well
known that the standard squared-error regularizer commonly used
in machine learning and statistics shrinks parameter estimates to-
ward zero, but it typically does not result in actual sparsity in the
model coefficients. Tibshirani solved this problem for linear re-
gression through the introduction of a method called the lasso for
optimizing the least squares loss with a regularizer that penalizes
the absolute values of the model parameters [22]. For linear mod-
els, setting a coefficient to zero is equivalent removing the underly-
ing variable from the model and, as a result, such `1 regularization
methods have been proven to be very effective at optimally solving
subset selection problems.

In the present case, our model is a neural network with one pa-
rameter for each pixel in the image and each hidden unit. To solve
the subset selection problem we need to simultaneously set all of
the outgoing connections from a group of pixels to zero. This is
likely not to happen when applying the standard `1 regularization
function in a randomly initialized neural network model. However,
the group-`1 regularizer developed by Yuan and Lin is designed
specifically to drive groups of parameters to zero simultaneously.
There are several different versions of the group-`1 regularizer. We
make use of the group-`1/`2 regularization function as shown be-
low. Note that in our case, we only regularize the input-to-hidden
layer weights. The groups consist of all of the parameters from a
given pixel to each of the K hidden units.

R(θ) =
D∑
i=1

d∑
j=1

(
K∑

k=1

(W IH
ijk)

2

)1/2

(5)

The neural network model parameters can then be learned by
optimizing F(θ|D) with the choice of regularizer given above.

Real-time Inference: Resource Usage vs Accuracy.
It is important to keep in mind that all model learning described

above happens in an offline setting. The real-time component of the
gaze estimation system consists only of acquiring an eye facing im-
age and performing a forward pass through the neural network. As
shown in Equations (1)-(3), this forward pass requires only float-
ing point addition and multiplication along with the computation
of the tanh non-linearity. These are simple enough that they can
be performed efficiently even on microcontrollers that do not have
a floating point unit, and are limited in RAM.

One of the key benefits of our approach is that the sparse acquisition-
based neural network model naturally lends itself to trading off en-
ergy consumption or resource usage for the accuracy of gaze pre-
diction. Setting the regularization parameter to larger values will
drive the parameters associated with an increasing number of pixel
locations to zero while maintaining as much accuracy as possible.
Fewer pixels implies a) less energy for using the imager, b) less
computational needs for predicting gaze from the pixels, and c) less
memory resources needed for storing the weights. All of these have
advantages depending on the energy constraints on the eyeglass or
the resource constraints on the microcontroller.

5. iShadow CALIBRATION
One important practical aspect of using a gaze tracking system

is calibration of the device to each user. We faced three challenges
in designing the calibration procedure for the system. (1) There
were many idiosyncrasies with the low-power Stonyman imager
since it was an early version of a research prototype, and we had
to perform extensive experiments across numerous parameters to
understand its characteristics. (2) The image stream from the eye-
facing imager changes depending on each individual’s eye shape
and eyeglass position, hence it was important to calibrate for each
individual. (3) We needed to find ways to minimize burden on the
participant and any manual overhead including adjustment of the
imager position, manual labeling of images for learning, etc. all of
which would make iShadow difficult to use for a new user. We de-
tail the process by which we addressed these issues and calibrated
the iShadow system for a new user.

FPN calibration: One drawback of the Stonyman camera is the
noise issues inherent to the logarithmic pixels used by the cam-
era. Such Fixed Pattern Noise (FPN) is typical in digital imagers,
and results from small manufacturing imperfections including pixel
size, material, interference with circuitry, etc which is unique to
each individual imager. However, logarithmic pixels are particu-
larly sensitive to these imperfections, meaning that most pairs of
pixels have a noticeably different response to equal incident illumi-
nation. This effect yields an extremely noisy image if it is not dealt
with.

FPN noise can be easily accounted for under the assumption that
the noise remains stationary. In this case, it is simple to correct
for the FPN by determining each pixel’s response to uniform inci-
dent illumination and using this to generate an offset mask over the
whole pixel array. The values in this mask are then subtracted from
every image captured by the camera, which removes the effects of
FPN completely. While FPN will remain constant under consis-
tent lighting conditions and camera configuration settings, the FPN
for the Stonyman camera is very sensitive to changes in outdoor
lighting conditions. In addition, the dynamic range of imager is
relatively low, resulting in saturation effects in bright sunlight.

(a) Image with FPN (b) FPN Mask (c) Image After FPN Correction

Figure 3: Stages of the fixed-pattern-noise (FPN) correction process. The raw image is collected with FPN present (a), from which the the
static FPN mask (b) is subtracted. The resulting image (c) is mostly free of FPN.

Fortunately, we found that the imager’s behavior under indoor
lighting illumination tends to be relatively uniform, and the we
could learn a mask that was reusable over a moderate range of light-
ing conditions. Under all indoor conditions, we have been able to
use a single FPN mask per camera and generate consistently viable
images. While this means that our system is not currently useful in
outdoor settings, this is an artifact of the camera that will hopefully
be resolved with further improvements to the hardware.

The process to learn a new mask for an imager is straightforward,
and needs to be only done once prior to mounting the imager on
the eyeglass. The imager must be exposed to uniform illumination
so as to determine the relative offsets for each pixel in the mask.
This should be done using a light-colored diffuser placed over the
camera lens. A diffuser can be anything from a nylon mesh, as is
often used in professional photography for illumination diffusion,
to a thin sheet of paper. Once the lens is covered, the iShadow
driver will capture and download an image to process as the new
FPN mask for that camera. This process must be performed once
for each of the two mounted cameras, and then FPN calibration
is complete. See Figure 3 for an example of an image with and
without FPN noise.
Collecting training data: Variations between subjects in the
shape, position of the eye, and placement of the eyeglass mean that
a new neural network model must be trained for each user, and
therefore some amount of labeled training data must be generated
per user.

The data collection process itself is quite simple. The subject sits
in front of a display of some kind for a short period of time. We use
a simple script that shows a black field on the display, and a white
circle of some small radius on that field. Subjects are fitted with the
iShadow glasses and seated in front of the display. To maximize
the effectiveness of the training data, the user should be positioned
so that the display extends to the edges or just beyond the edges
of the scene-facing camera’s field of view. This will ensure that
there can be training data samples generated over the entire field of
view. Checking that the system is in proper position can be done
quickly by pulling a few images from the outward-facing camera,
and displaying this to the user in real-time so that the user can adjust
the position of the eyeglass.

When data collection is triggered to begin, the circle begins mov-
ing in a random pattern over the space of the display. Subjects are
directed to focus their gaze on the circle as it moves across the
screen, and iShadow begins collecting full-frame images from both
the eye-facing and world-facing cameras. The exact training time
needed depends on how accurate of a model is needed, however,

as we show in our evaluation, after accumulating one minute of
labeled training data, adding more does not yield a significant in-
crease in the accuracy of the predictor. Thus, the training session
can be very brief without compromising on the accuracy of the gen-
erated neural network model.

After training data collection is complete, the collected images
need to be transferred to a computer to train the neural network
model. This can be done by storing the images on an SD card
during the session or live streaming via USB.

Labeling training data: One potentially time-consuming aspect
about learning a model for each user is generating labels from the
collected data. Since the user’s head position depends on height
and how he/she is seated, we cannot just use the pixel positions
where the target circle is drawn on the computer screen. Instead,
we process the image stream from the outward-facing imager, and
use a simple computer vision algorithm to detect a light-colored
patch on a dark field (rest of the screen). In cases where this pro-
cess fails (often because the dot is on the edge of the field of view
of the imager), the calibration algorithm asks for assistance from
the human, but this is largely unnecessary for the training process.
Depending on the amount of training data, the process generally
takes only a few minutes.

Robustness to blinks and head movements: One question with
calibration is whether there is a negative effect of the users blink-
ing or possibly drifting from the target for brief periods. This is
not a significant issue since we are able to generate a high volume
of data over a short period of time through automatic labeling. As
a result, even if there are periods where the user was blinking or
the user’s gaze moved off-target for a brief of period of time, these
are treated as noise by the neural network learner as long as the
majority of the samples in the training set involve the user being
correctly focused on the target. Our experiments show that train-
ing under this assumption yields models that have a high degree of
prediction accuracy.

Learning the model: In addition to images from the eye-facing
camera, and a corresponding set of gaze coordinates from the label-
ing session, the model learner also requires a set of regularization
parameters λ, each of which will yield a different model with differ-
ing sparsity values. The process for choosing the λ values depends
upon the application. For our study we swept the training across
a series of values ranging from very high to very low sparsity to
generate curves for the effect of λ on gaze prediction accuracy as
well as power consumption.

The suitable regularization parameter can be chosen in a few dif-
ferent ways. The default option is to find a good tradeoff between
prediction accuracy and power. We generally find that there is a
sweet spot for each individual i.e. there is a small range of sparsity
that yields good prediction accuracy at a very low power cost, and
this may be a good standard target for the model generator. Another
option is dynamic generation based on the desired value of a cer-
tain system parameter, such as prediction accuracy or frame-rate.
In this scenario, the model generator would sweep over a standard
set of lambda values, generating a prediction model for each one.
The model trainer estimates system error based on cross-validation
during training, this value can be used to find an acceptable λ value
and a corresponding model to meet a prediction accuracy criterion.
If the goal is a certain prediction rate, then the same process can be
performed using sparsity as the metric.

Once the λs have been decided (or if they are decided dynam-
ically), the calibration program trains a neural network model for
each and saves the corresponding model parameters. Once a final
model has been chosen to be used for online prediction, it is au-
tomatically loaded onto the glasses. At this point, the system is
prepared to do gaze prediction for the new subject.

6. iShadow SYSTEM
Figure 4 shows a system diagram and photos a prototype version

of iShadow; our current hardware implements all the design ele-
ments described in previous sections. We now briefly describe the
key hardware sub-components used in the prototype and describe
our optimized real-time gaze tracking implementation.

6.1 iShadow Platform
The iShadow platform features a standard glasses frame with

two low-power cameras, an inertial sensor, microcontroller, and
bluetooth, as seen in Figure 4. One camera is mounted in front
of the user’s right eye for acquiring eye-facing images. The other
is mounted in the center of the frame facing outward to capture the
center of the user’s field of view. We use the standard optics on the
image sensors, which give a 36◦ field of view.

Our hardware is designed with the constraint that needs to be thin
and lightweight enough to be mounted on the side frame of a pair
of eyeglasses, and roughly the same form-factor as a Google Glass.
This required several hardware revisions and optimizations to make
all components fit in the appropriate size. Our latest prototype is
shown in Figure 4 and the components are described in Table 1.
Of the components listed, the focus in this paper is primarily on the
eye-facing imager, and computation of gaze on the MCU. Since the
imager is central to our algorithm and implementation, we now turn
to a more detailed description of its innards.

Eye-facing imager Stonyman 112x112 greyscale [20]
World-facing imager Stonyman 112x112 greyscale
Inertial Motion Unit Invensense 9-axis IMU [10]
Processor STM32 Arm Cortex M3 microcontroller

[19]. 32 MHz processor; 48KB mem-
ory; 384KB flash storage

Storage microSD card, 64GB max
Radio Bluetooth

Table 1: iShadow platform components

Image Sensors: Our hardware framework is built around the
Stonyman Vision Chip produced by Centeye, Inc.1 This device fits
our research purposes for several reasons. First, it is a low-power
embedded camera, consuming approximately 3 mW when operat-
ing at full power. (see Table 2 for details). Second, the design of
the pixel array allows for random access to individual pixel values.
The combination of low-power operation and random access capa-
bility makes the Stonyman unique among commercially available
image sensor chips.

The Stonyman features a 112x112 square grid of pixels. These
pixels are characterized by their logarithmic voltage response to
lighting conditions. This allows for a greater dynamic range com-
pared to a pixel that operates linearly with respect to lighting con-
ditions. The use of logarithmic pixels allows a random-access in-
terface, which the Stonyman provides via a register-based con-
trol scheme. It is this feature specifically that enables the energy-
accuracy trade-offs that we explore in this work.

Like many contemporary mobile image sensors, the Stonyman
sensor provides a sleep mode. We exploit this feature in iShadow
to use power more efficiently. The majority of the power drawn
by the camera while it is active comes from the pixel acquisition
circuitry, and this can be powered down using a control register. In
this low-power state there is only a small power draw - less than a
half a microwatt - for the digital control circuitry that maintains the
values in the control registers and allows the camera to be switched
back to full-power mode. There is a small delay time, on the order
of a few microseconds, for the camera to power up and back down.
These delay times, as well as the power consumption of the camera
in wake and sleep modes, are given in Table 2.

Finally, while we made the choice to use the Stonyman imager
as the outward-facing camera in addition to the inward facing one,
the outward facing imager can be replaced with a higher-end de-
vice if better quality images are needed for vision processing. The
insight in this paper is that gaze coordinates can be obtained with
a very low-power and low-resolution eye-facing imager such as the
Stonyman camera.

Active to Sleep Delay 4 µs
Sleep to Active Delay 10 µs
Active Power Consumption 3.13 mW
Sleep Power Consumption 0.041 µW

Table 2: Stonyman Power Consumption and Transition Times in
and out of Sleep Mode

6.2 Basic Operation Modes
At the lowest level, iShadow supports three basic modes of sys-

tem operation — full image capture, real-time gaze tracking, and
life logging. However, the system’s functionality is not limited to
the modes outlined here, as one of the primary benefits of iShadow
over existing commercial eye trackers is its programmability. Users
who have a specific application in mind that might benefit from a
more complex operating scheme can implement and run it on the
system themselves, allowing for a much broader set of usage sce-
narios than those outlined here.

Full image capture: In this mode, iShadow is continuously cap-
turing full-frame images from the inward and outward-facing im-
agers and storing it into on-board flash. This mode is intended
primarily for offline data analysis, and adjustment of parameters

1http://centeye.com/products/
stonyman-vision-chip-breakout-board

http://centeye.com/products/stonyman-vision-chip-breakout-board
http://centeye.com/products/stonyman-vision-chip-breakout-board

(a) Diagram (b) Platform (c) On Head

Figure 4: Figures show an architecture diagram and different views of the third-generation iShadow prototype. The prototype has two
cameras, one at the center front and one facing the eye, with the electronics mounted on the control board on the side. Batteries, while not
shown, are mounted behind the ear.

during the calibration phase (described above). By tightly optimiz-
ing the image capture method and interleaving control signals with
ADC delays, we are able to drive both cameras at the same capture
rate as if we were only driving one. The full-image capture rate for
both cameras is 10 Hz.

These images can be stored to an onboard SD card or transmit-
ted to another device via USB or bluetooth. For storage, we have
designed our system to use a double-buffered scheme that allows
the SD communication peripheral to read and transmit already-
collected pixel data while more data is written to the second buffer.
There is still some delay introduced by the SD card writes, as there
are a small number of operations needed to trigger the SD card
write process. However, this improvement hides the majority of the
SD write latency. Since our available RAM is too small to hold an
entire frame, let alone two double-buffered frames, we write data
at regular intervals during image collect to prevent overflow.

Real-time gaze tracking mode: The most useful operating mode
of iShadow is real-time gaze prediction, where it is continuously
processing the pixels from the eye-facing imager to output gaze
coordinates. In this mode, iShadow is solely processing image
streams from the eye-facing imager. Once a gaze prediction has
been completed and a gaze estimate generated, it can be used in
several ways. One option is to store values for some form of post
processing later - this is especially useful when run the eye-facing
imager runs in conjunction with the world-facing imager, as in the
final operating mode below. The gaze data can also be used for trig-
gering more complicated on-board processes or for making higher-
level inferences about the state of the eye or the wearer, as discussed
in the following section.

Lifelogging mode: iShadow’s third operating mode is a simple
extension of real-time gaze-tracking. Simply put, it is capturing
what in the outside world the user is looking at. By running the real-
time gaze inference algorithm using the eye-facing imager and tak-
ing full images from the world-facing imager, the system records
where the user is looking and what they are looking at. This type
of "lifelogging" is becoming more prevalent as wearable computing
grows cheaper and more accessible.

In this mode, the bottleneck is the outward-facing image capture.
By doing interleaving of prediction operations with ADC reads the
predict time can be completely hidden, however, there is no way to
significantly reduce the time needed to collect a full-frame image
from the outward-facing camera. This operating mode is a sim-
ple but straightforward example of the types of applications that

iShadow facilitates, and does not require any additional logic on
top of the existing firmware.

6.3 Gaze-triggered applications
While the focus of this paper is not on designing gaze-driven ap-

plications, we briefly describe a few example applications that can
be designed over the above operating modes. Several higher-level
inferences are possible from a continuous stream of gaze coordi-
nates: a) Eye fixations can be detected by looking for windows
when the gaze coordinates are relatively steady with small changes
due to head movements, b) Smooth Pursuit can be detected by look-
ing for slowly changing gaze coordinates, and c) Sudden events
can be detected by looking for a large saccade or change in gaze.
These higher-level inferences could suggest different things about
the visual state of the outward-facing imager — for example, eye
fixations could be during conversation with an individual, smooth
pursuit could be while reading from a book or screen, and sud-
den events could be an unexpected change in the surroundings. In
the case of disease progression, abnormal gaze patterns may be de-
tected, for example, abnormally frequent saccades. Once such a
high-level inference detects an event of interest, it quickly triggers
the outward-facing imager to capture the state of the world, and
stores this data into the local SD card or streams the data over blue-
tooth to a mobile phone.

7. EVALUATION
To test the effectiveness of iShadow at accurately and efficiently

predicting the wearer’s gaze location, we collected sample data
from ten different subjects - eight men and two women from the
ages of 22 to 31. We ran each subject through the calibration pro-
cess outlined in section 5, excluding the FPN mask generation as
it does not affect the per-individual results. We generated at least
five minutes of labeled data for each subject in full-image-capture
mode. To generate the ground-truth labels, we use the approach
described in section 5. Running at the maximum framerate of 10
Hz, the resulting dataset includes at least 3000 images per user.
We used this data to perform a variety of experiments to determine
whether we had reached our design goals.

We present our evaluation in three sections. Section 7.1 details
our experiments to determine whether the neural network model
and the `1-subsampling method are capable of accurately estimat-
ing the wearer’s gaze coordinates. In section 7.2, we evaluate the

30 60 90 120 150 180 210 240 270 300
Training Time (s)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

P
re

di
ct

io
n

E
rr

or
(d

eg
re

es
)

Figure 5: Amount of training time for the system versus the result-
ing gaze prediction accuracy.

tradeoffs between the model parameters and the resulting perfor-
mance of the hardware, especially the image capture pipeline.

7.1 Evaluation of Neural-Network-Based Pixel
Selection

We first evaluate the benefits of our neural network-based method
to select a sparse set of pixels. Using the data collected, we per-
formed a number of experiments to investigate the accuracy of the
neural network gaze prediction model as a function of the number
of active pixels. We generated a set of 10 values of the regulariza-
tion parameter λ, and trained each user’s data over this same set
of λs. Our per-user, per-λ experimental framework is based on a
standard five-fold random re-sampling protocol. For each fold, we
divided the available data into a training set and a test set com-
pletely at random using an 80/20 split.

We use the training set to estimate the parameters of the model
and use the learned model parameters to predict gaze locations for
each test image. We compute the gaze prediction error for a given
test fold in terms of the average squared distance (`2 distance) be-
tween each true gaze location in the test set and the predicted gaze
location given each eye image in the test set. We average the pre-
diction error over the five test folds to generate an error value for
that user and λ. In addition, the size of the pixel selection mask
varies with each fold as the optimizer finds slightly different solu-
tions when using different training data sets. To account for this,
we also average the size of the pixel mask generated over the five
folds.

After generating per-user data, we average the prediction error
and pixel mask sizes across all ten users to generate our results be-
low. While there is moderate variation in the results between users
due to differences in eye position and shape, the general trends
across users are consistent and can be seen in the results we present
here. For all of our results, we present the mean value and the 90%
confidence interval unless otherwise indicated.

Accuracy – Model Size tradeoffs.
One of the benefits of our algorithmic framework is that it is

able to provide a variety of models that offer different tradeoffs
between the overall complexity of the model (i.e. number of pixels
sampled, and number of weights for computation) and the accuracy
of the model (i.e. the precision in degrees). This tradeoff is enabled
by using different choices of the regularization parameter, which
varies the penalty for model complexity compared to the accuracy.

First, we look at whether the regularization parameter is a use-
ful knob for tuning model size and accuracy. Figures 6a and 6b
show that varying the regularization parameter enables us to select

a spectrum of models with different prediction accuracies and dif-
ferent fractions of selected pixels, respectively.

Figure 6c shows just the prediction accuracy vs model size —
interestingly, we see that varying the percentage of activated pixels
from 100% down to about 10% only has a minor effect on the pre-
diction accuracy. This shows that there is substantial redundancy in
the eye image, and the neural network is able to predict gaze just as
well with 10% of the pixels activated as 100% of the pixels. On our
imager, this means that sampling 10K pixels per image vs sampling
1K pixels per image has roughly the same prediction error, which
in turn can translate to substantial reduction in power consumption.

We also see that the accuracy of the neural network model does
not drop below about 2◦ even when the entire image is sampled.
In contrast, high-end mobile eye trackers advertise accuracies of as
low as 0.5◦. The primary reason for this gap is that the eye-facing
imager lens is mounted at a fixed position on our eyeglass in our
current iShadow prototype, and has a limited field of view of 36◦.
As a result, for some individuals, the pupil was rarely completely
within the field of view of the imager.

This can be seen in Figure 7, which compares sample eye images
between users for whom the predictor performed well, average, and
poorly compared to the rest of the set. In general, having the entire
range of the pupil’s motion visible to the camera, as well as a strong
contrast between the iris and the white of the eye (sclera) seem to
be the most significant indicators of good predictive performance.

Despite the gap, we argue that a 3◦ accuracy error is accept-
able for a variety of real-world applications, particularly when the
object being viewed is in relatively close proximity, for example,
detecting the individual with whom a user is engaged in face-to-
face conversation. Figure 8 provides a better understanding of the
error in the outward image plane. Given that the imager already
has a small field of view, gaze coordinates with roughly 3◦ error is
reasonable enough to get a good idea of where the user is looking.

To get a better idea of how the neural network selects weights,
we look at some example weights learnt by the hidden units. Fig-
ure 9 shows the weights for each hidden unit. Each example has
approximately 10% of pixels active We can also see that the group-
`1 method learns to focus on the region of the eye image where
the pupil and the white of the eye are most likely to appear, as one
would expect.

Calibration time.
To evaluate how much training data is needed to generate an ef-

fective model, we look at how quickly the gaze prediction con-
verges as the amount of data that we use for training increases.
Figure 5 shows the results for a particular choice of the regulariza-
tion parameter (λ = 0.01). We see that the convergence is very fast
— even if there is only 60 seconds of data used for training, that
is sufficient for the algorithm to determine the appropriate param-
eters with little to no improvement as the amount of training data
increases. Similar results were seen for other values of λ. Thus, the
time for calibration is not a bottleneck in system operation.

7.2 iShadow System Evaluation
We now turn to an evaluation of the iShadow platform predict-

ing gaze in real-time with models trained using the neural network-
based sparse sampling algorithm and appropriate regularization pa-
rameters, λ, as described earlier.

We wish to evaluate three key performance metrics — gaze track-
ing rate, prediction accuracy, and energy consumption. While gaze
prediction accuracy and energy consumption are self-explanatory,
gaze tracking rate requires a bit more explanation. Unlike a tra-
ditional eye tracker with an active pixel imager that involves ex-

10−410−310−210−1

Regularization

0

1

2

3

4

5

6

P
re

di
ct

io
n

E
rr

or
(d

eg
re

es
)

(a) Lambda vs Accuracy

10−410−310−210−1

Regularization

0

20

40

60

80

100

Pe
rc

en
tA

ct
iv

e
P

ix
el

s

(b) Lambda vs Model Size

0 20 40 60 80 100
Percent Active Pixels

0

1

2

3

4

5

6

P
re

di
ct

io
n

E
rr

or
(d

eg
re

es
)

(c) Model Size vs Accuracy

Figure 6: Plots (a) and (b) show the effect of regularization parameter on gaze prediction accuracy and model size respectively. Plot (c) shows
the net result, which is how the number of pixels acquired can be reduced dramatically (up to 10×) with minor effect on gaze prediction
accuracy.

(a) 1.32◦ Error (b) 2.19◦ Error (c) 3.40◦ Error

Figure 7: Comparison of eye images from multiple users, giving the average prediction error for that user. Notice that the position of the eye
in the image and iris / sclera contrast have a prominent effect on prediction accuracy.

posure followed by frame capture and image processing, we use a
logarithmic pixel imager where the pixels can be continuously read
out at any time. Thus, we refer to gaze tracking time as the amount
of time after sampling the first pixel of the pre-selected sparse set
until we obtain the results of the gaze. Gaze tracking rate is the
number of such gaze predictions we obtain per second.

Tracking rate vs prediction accuracy: By tuning the regular-
ization parameter, λ, we can tradeoff between the three perfor-
mance metrics. Let us first consider gaze tracking rate vs accu-
racy while fixing the power budget. Lets start with the case when
all pixels are sampled — here, accuracy is high since all pixels are
available, but gaze tracking rate is poor since fewer images are sam-
pled per second. By increasing the level of regularization, we can
progressively decrease the time needed to make a single prediction
since: a) fewer pixels need to be read from the camera and there are
fewer calculations to perform, and b) the number of feature weights
is proportional to the number of pixels, hence the memory footprint
of the model also decreases. Thus, we can increase gaze tracking
rate to capture rapid gaze changes, but we suffer in the accuracy of
tracking due to a coarser model with fewer pixels.

Figure 10 provides an empirical evaluation of the rate vs accu-
racy tradeoff on iShadow. We run iShadow in always-on mode and
progressively reduce the model size from large (low error, low rate)
to small (high error, high rate). The results are as expected — for
large models, we get prediction errors of roughly 3◦ but low gaze
tracking rates around 10 Hz. As the models reduce in size, gaze
prediction errors increase to roughly 4◦, but gaze tracking rates in-
crease to 30+ Hz as well. For reference, commercial eye trackers

operate at 30 Hz or higher, therefore, these results show that with
a small reduction in accuracy, iShadow can achieve sampling rates
comparable to commercial eye trackers.

Tracking accuracy vs Energy consumption: We now turn to
gaze tracking accuracy vs power consumption. When evaluating
energy consumption, we need to consider two hardware compo-
nents, the micro controller (MCU) and the imager, and two soft-
ware subsystems on the MCU, pixel acquisition from the camera,
and the cost of running the gaze prediction algorithm. Thus, we do
a three-way breakdown of energy: a) energy consumed for pixel
capture by the imager, b) energy consumed for pixel acquisition by
MCU, and c) energy consumed for executing the gaze prediction
algorithm on the MCU.

Figure 11a shows the results for a fixed gaze tracking rate of 4
Hz. The system is duty-cycled whenever it is not actively perform-
ing gaze acquisition or prediction. We measured power between
our on-board voltage regulator and the relevant circuit at a rate of
30 KHz, and report the energy breakdown for each gaze prediction
across the different components. (Power consumption is just 4×
the reported energy number since gaze tracking rate is 4 Hz.)

The general trend in the graph is as expected — a smaller model
means less energy consumption but higher error. More interesting
is the breakdown across the hardware and software components.
The results show that the energy consumed for prediction is roughly
the same as the energy consumed by the camera. But the main cost
of acquisition is at the MCU, which needs to set appropriate control
lines to select pixels, and read-out the pixels over a serial bus. The
cost of gaze prediction is about a third or less of acquisition cost.

Figure 8: The circle gives an example of 3◦ of error in the out-
ward imager plane around the white dot. The error is less if the
eye is fully within the field of view of the imager, and higher
when not fully in the field of view.

Figure 9: This figure shows the weights learned by each hidden
unit in the neural network model for subsets of approximately
10% of pixel locations.

Figure 11b shows the time spent in each subsystem per gaze pre-
diction — since a gaze tracking output is obtained every 250 ms,
this shows what portion of this time period is spent per subsystem.
Since the camera ON time is the same as acquisition time, we show
only the plot for acquisition in the figure. The result shows that the
least amount of time is spent in the gaze prediction operation, and
more time is spent in pixel capture and acquisition by the MCU.

Overall, these results demonstrate that sub-sampling pixels is ex-
tremely important to reduce power consumption of the iShadow
platform — gaze prediction consumes less time and energy com-
pared to pixel capture and acquisition, clearly justifying the benefits
of sparse acquisition. This is facilitated in hardware by the Stony-
man’s random-access pixel capability, without which the time and
energy for the MCU to acquire all of the pixel data would dwarf the
benefits of decreased gaze prediction time and camera sleep.

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Prediction Error (degrees)

100

101

102

G
az

e
Tr

ac
ki

ng
R

at
e

(H
z)

Figure 10: Smooth tradeoff between gaze tracking rate and predic-
tion error as λ is varied. The MCU is always active in this experi-
ment.

8. DISCUSSION
The design of a computational eyeglass platform is extremely

complex due to the complexity of the sensors, the positioning and
mounting on the eyeglass frame, and the demanding computational
needs for processing image streams. While our results are promis-
ing, there are several steps to take before such platforms are ready
for more widespread use. We discuss some of these steps in this

section, as well as the types of applications that our platform is
suitable for.

Imager + IMU fusion: While the techniques that we use in this
paper can be used to identify gaze direction, we need additional
information about head movement to precisely determine whether
the individual is fixated at the same location in the external world.
For example, the head might move about during conversation but
the eye might continue to track the individuals face. Our platform
incorporates an IMU in addition to imagers to enable such fusion,
but our algorithms have not yet taken advantage of this capability.

Image field of view: As described in §7, one of the reasons why
our gaze tracking performance varies across individuals is because
of the field of view of the eye-facing imager. We currently use a
lens that has a field of view of 36◦, as a result of which the entire
eye is not in the visual field of the imager for some subjects. We
believe that this issue can be fixed using a lens with a wider field
of view, such as a fisheye lens. One important advantage of the
neural network-based gaze tracking algorithm used in iShadow is
that it is more robust to distortions caused by different lens than
canonical vision-based techniques. Even though a fisheye lens may
be expected to distort the image, the neural network technique is
not sensitive to such distortions compared to an algorithm that does
shape fitting, hence our approach can be expected to retain or im-
prove performance.

Inward-facing imager placement: An obvious consideration
from an aesthetic perspective is how to place the inward facing im-
ager such that it does not obstruct the field of view of the user.
Several possibilities present themselves — for example, the pixels
of an imager may be mounted all along the rims of the eyeglass, or
the imager may be mounted on the side frame and observe a reflec-
tion of the eye on the spectacles lenses. While such design aspects
are beyond the scope of this work, we note that a key benefit of the
techniques presented in this paper is that it can be easily adapted to
new eyeglass designs.

For example, consider the case where pixel imagers are mounted
throughout the eyeglass rim. Depending on the shape of a user’s
eye, different sets of pixels may carry information that is relevant
to gaze. These minimal set of pixels can be selected by applying
techniques described in this paper. The same is true for the second
example, using a reflected eye image. Thus, our methods generalize
to a variety of other designs where subsampling of pixels may be
useful.

2.5 3.0 3.5 4.0 4.5 5.0
Prediction Error (degrees)

0

1

2

3

4

5

6

7

E
ne

rg
y

pe
rF

ra
m

e
(m

J) Acquisition
Prediction
Camera

(a) Accuracy vs Energy

2.5 3.0 3.5 4.0 4.5 5.0
Prediction Error (degrees)

0

20

40

60

80

100

120

140

160

Ti
m

e
pe

rF
ra

m
e

(m
s)

Acquisition
Prediction

(b) Accuracy vs Time Elapsed

Figure 11: Breakdown of energy and time for different subsystems during the capture and predict process. (a) is the amount of energy
consumed for pixel acquisition by the MCU, the gaze prediction computation, and cameras, and (b) is the amount of time spent by the MCU
in acquisition and prediction.

Robustness across users: We have described the variability of
per-user performance and the improvements we plan to implement
to make performance better and more consistent across subjects
that it has been trained on. However, our end goal is to provide a
system that works with little or no per-user training required. This
is critically important for accessibility and ease of use. The first
step towards this goal is addressing the issue of eye localization in
the image, either by altering the hardware to allow repositioning of
the camera or by automatically adjusting for the position of the eye
in the image. Once that issue has been addressed, we plan to collect
data from a much larger number of subjects and begin building and
testing “universal” models that will work at least moderately well
on a new subject without requiring prior training.
Comparison to other eye tracking devices: The development
of specialized eye tracking hardware has accelerated rapidly over
the past decade, to the point where remote (non-mobile) devices
are expected to have only a few tenths of a degree of predictive er-
ror [7]. Even mobile trackers report errors of 1◦ or less [2]. The
fact that the error rates we report are moderately higher than this
immediately begs the question of why we chose to introduce this
system. Part of the discrepancy is the immaturity of the system
- iShadow is still in early development, and accuracy can be ex-
pected to improve noticeably as we refine the system and tracking
algorithm. It would be overly optimistic, however, to assume that
such progression will bring us to the same order of magnitude of
accuracy as industrial tracking devices.

However, current mobile trackers remain too bulky to be de-
ployed comfortably in real-life scenarios and have too short of a
battery life for even moderate-length studies of 4+ hours. Because
of iShadow’s low-power design, it offers a significantly longer run
time and smaller form factor than existing mobile devices. Once
the design of the system has been refined, we envision it being used
for long-running experiments in the wild. For these types of appli-
cations it is unlikely that extremely fine-grained accuracy will be
needed. iShadow’s current accuracy is easily enough to identify,
for example, what object the user is looking at in a scene. It is not
enough to distinguish gaze between lines of text, but tasks of that
nature are generally better suited to static test environments.

In short, all eye tracking hardware represents a tradeoff between
accuracy and mobility. The current generation of mobile eye track-
ers give moderate mobility at the cost of some accuracy. We present
iShadow as a further step in that same direction, giving excellent
mobility at a slight accuracy cost over and above that of current

industrial mobile devices. For tasks that require such mobility, we
believe that iShadow is the best option currently in existence.

9. CONCLUSIONS
We present a first-of-its-kind low power gaze tracker that is de-

signed to predict gaze in real-time while operating with a power
budget of a few tens of milliwatts. This paper presents a soup-to-
nuts implementation of such a system, including a full hardware
prototype, a new neural-network based algorithm for sparse pixel
acquisition, a full implementation of a real-time gaze predictor on a
microcontroller, and evaluation on several subjects. Our approach
exploits the unique properties of random access pixel cameras to
achieve a flexible energy-accuracy trade-off in the wearable/real-
time setting. Our results show that we can dramatically reduce
power consumption and resource needs by sampling only 10% of
pixel values, without compromising accuracy of gaze prediction.
These results are highly significant in that they offer a clear path to-
ward ubiquitous gaze tracking for a variety of applications in com-
puter vision, behavioral sensing, mobile health, and mobile adver-
tising. For videos on the working of iShadow, see [11].

Acknowledgements
This paper has benefited from extensive discussions with several
people. In particular, we would like to thank Russ Belawski and
Prabal Dutta, who have been instrumental in getting earlier proto-
types of our platform up and running, and enabling several itera-
tions of initial data collection that helped us bootstrap this work.
We would also like to thank Jeremy Gummeson, for much needed
help with the hardware prototype, and Geoffrey Barrows of Cent-
eye, Inc., for a great deal of crucial support and advice for the
Stonyman cameras. We are also very grateful to our shepherd,
Prof. Lin Zhong, for extensive interactions and insightful sugges-
tions that helped us improve presentation of results in the paper.
This research was partially supported by NSF grants #1239341,
#1217606, and #1218586.

10. REFERENCES
[1] A neural-based remote eye gaze tracker under natural head motion.

Computer Methods and Programs in Biomedicine, 92(1):66 – 78,
2008.

[2] Applied Science Laboratories. NeXtGeneration Mobile Eye: Mobile
Eye XG. http://www.asleyetracking.com/Site/
Portals/0/MobileEyeXGwireless.pdf, 2013. Online;
accessed April 7, 2013.

[3] S. Baluja and D. Pomerleau. Non-intrusive gaze tracking using
artificial neural networks. Technical report, Pittsburgh, PA, USA,
1994.

[4] C. M. Bishop. Neural networks for pattern recognition. Oxford
university press, 1995.

[5] D. Cheng and R. Vertegaal. An eye for an eye: a performance
evaluation comparison of the lc technologies and tobii eye trackers.
In Eye Tracking Research & Application: Proceedings of the 2004
symposium on Eye tracking research & applications, volume 22,
pages 61–61, 2004.

[6] A. T. Duchowski. Eye Tracking Methodology: Theory and Practice.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[7] D. W. Hansen and Q. Ji. In the eye of the beholder: A survey of
models for eyes and gaze. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(3):478–500, 2010.

[8] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements
of statistical learning: data mining, inference and prediction. The
Mathematical Intelligencer, 27(2):83–85, 2005.

[9] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka,
and J. Van de Weijer. Eye tracking: A comprehensive guide to
methods and measures. OUP Oxford, 2011.

[10] Invensense-9150. MPU-9150 Nine-Axis (Gyro + Accelerometer +
Compass) MEMS MotionTracking Device. http:
//www.invensense.com/mems/gyro/mpu9150.html,
2013.

[11] iShadow. iShadow Videos.
http://sensors.cs.umass.edu/projects/eyeglass/, 2013.

[12] Y. Ishiguro, A. Mujibiya, T. Miyaki, and J. Rekimoto. Aided eyes:
eye activity sensing for daily life. In Proceedings of the 1st
Augmented Human International Conference, page 25. ACM, 2010.

[13] D. Li, J. Babcock, and D. J. Parkhurst. openeyes: a low-cost
head-mounted eye-tracking solution. In Proceedings of the 2006

symposium on Eye tracking research & applications, pages 95–100.
ACM, 2006.

[14] C. Morimoto and M. Mimica. Eye gaze tracking techniques for
interactive applications. Computer Vision and Image Understanding,
98(1):4–24, 2005.

[15] J. Nocedal and S. J. Wright. Numerical optimization. Springer
Science+ Business Media, 2006.

[16] V. Rantanen, T. Vanhala, O. Tuisku, P. Niemenlehto, J. Verho,
V. Surakka, M. Juhola, and J. Lekkala. A wearable, wireless gaze
tracker with integrated selection command source for
human-computer interaction. Information Technology in
Biomedicine, IEEE Transactions on, 15(5):795–801, 2011.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Nature,
323(Oct):533–536+, 1986.

[18] W. Sewell and O. Komogortsev. Real-time eye gaze tracking with an
unmodified commodity webcam employing a neural network. In
CHI’10 Extended Abstracts on Human Factors in Computing
Systems, pages 3739–3744. ACM, 2010.

[19] STM32. STM32 32-bit ARM Cortex MCUs. http:
//www.st.com/web/en/catalog/mmc/FM141/SC1169,
2013.

[20] Stonyman. Stonyman Vision Chip. http://centeye.com/
products/stonyman-vision-chip-breakout-board/,
2013.

[21] K.-H. Tan, D. Kriegman, and N. Ahuja. Appearance-based eye gaze
estimation. In Proceedings of the Sixth IEEE Workshop on
Applications of Computer Vision, 2002., pages 191–195, 2002.

[22] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
pages 267–288, 1996.

[23] Tobii. Tobii EyeX Controller. http://www.tobii.com/eye-experience/,
2013.

[24] Tobii Technology. Tobii Glasses Eye Tracker. Online, 2013. Online;
accessed April 7, 2013.

[25] L. Young and D. Sheena. Survey of eye movement recording
methods. Behavior Research Methods, 7(5):397–429, 1975.

[26] M. Yuan and Y. Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 68(1):49–67, 2006.

http://www.asleyetracking.com/Site/Portals/0/Mobile Eye XG wireless.pdf
http://www.asleyetracking.com/Site/Portals/0/Mobile Eye XG wireless.pdf
http://www.invensense.com/mems/gyro/mpu9150.html
http://www.invensense.com/mems/gyro/mpu9150.html
http://www.st.com/web/en/catalog/mmc/FM141/SC1169
http://www.st.com/web/en/catalog/mmc/FM141/SC1169
http://centeye.com/products/stonyman-vision-chip-breakout-board/
http://centeye.com/products/stonyman-vision-chip-breakout-board/

