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4.1.2 Sensors Comparison. Using only the dataset from the Aware Home semi-controlled study, we compared

different sensing modalities on the basis of their recognition performance and usability.

The activity recognition processing pipeline was based on prior literature and compared the performance of

different sensors and all combinations of sensors using leave-one-user-out (LOUO) user-independent testing.

We used the approach suggested by Bedri et al. to develop the processing pipeline for the IMU and proximity

sensor ([6], see Figure 5). Bedri et al. also recommended using Hidden Markov Models (HMMs) with 10 minute

segments for the final classification. For the neck microphone, past work suggested using Mel-Frequency Cepstral

Coefficients (MFCCs) to differentiate between speech and non-speech activities [23, 29]. Such a capability can

be valuable to differentiate between talking and other activities. Therefore, we calculated 26 MFCCs from the

microphone data (100 ms using 20-filter bank channels) before calculating further features from the audio.

Figure 6 shows a preliminary comparison across the sensing modalities. The IMU placed behind the neck

(back-IMU) was used in all sensor conditions because it helped to filter out movement based on more gross body

Fig. 4. Example data from the y-axis of the behind-the-ear gyroscope. The dots indicate local maxima with high energy in

the signal. As compared to talking, the peaks for eating are more periodic and ”spiky”.

Fig. 5. Flowchart for initial evaluation of the multi-sensor setup
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Fig. 6. Comparison between sensingmodalities. E = behind-the-ear IMU, P = outer-ear proximity sensor, M = neckmicrophone.

The back IMU is used in all condition to detect if the user was walking. The performance of behind-the-ear IMU (E) was

most consistent for all three metrics. It was also considered most comfortable to wear by the users.

activities (e.g., walking). The behind-the-ear IMU (E) performs better than other combinations. The combination

of behind-the-ear gyroscope and proximity sensor (E+P) has comparable results to E, but there are no clear

benefits of using the additional sensor. Beyond this preliminary performance evaluation, we decided to focus our

attention only on the behind-the-ear gyroscope. While it had marginally better performance than other sensors,

more importantly it was the most preferred sensor by the users.

Our post-session survey highlighted that the participants did not prefer using the in-ear proximity sensor.

Respondents rated comfort and usability on a five point Likert scale. Wilcoxon Signed Rank Test showed that the

users found back-of-the-ear IMU more comfortable than the in-ear proximity sensor (Md = 4 vs. Md = 3.5, p ¡

0.05). In the informal focus group session as well, multiple users complained about the in-ear earbud.

”The [in] ear piece was uncomfortable. It felt piercing and itchy.”

”The Bose headphones felt uncomfortable after extended periods of use.”

”I’m not used to having something in my ear when I’m eating ”

Thus, we decided to limit the evaluation of the Outside-the-lab study to the behind-the-ear IMU and used the

back-IMU to cancel large body motions.

4.2 Redesign of recognition pipeline

The processing pipeline described in Section 4.1.2 was based on prior literature and we used it to do a preliminary

comparison of performance of various sensing modalities. Instead of opting to continue to optimize our Hidden

Markov Models, we decided to switch to a different machine learning approach. In general, HMMs are more

suited for discovering patterns and transitions in temporal data sequences. They are ideal when the model needs

to develop an understanding of the shape of the signal. However, Figure 4 shows that the behind-the-ear IMU acts

as a very direct sensor that captures the oscillation patterns of the temporalis muscle when a user is chewing.

The behind-the-ear IMU simplifies the machine learning problem to primarily differentiate between magnitude

and periodicity of motion from different activities. For this problem, we believe summary statistical features and

an algorithm like Random Forests should suffice.

In the rest of this section, we provide full details of our machine learning pipeline, and provide explanations

for various design decisions. Figure 7 shows the whole processing pipeline.
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Fig. 7. Flowchart for EarBit algorithm

4.2.1 Signal Conditioning. The new pipeline starts with a preprocessing step to condition the raw signals.

This step includes smoothing the 50 Hz gyroscope data using a Butterworth filter of order 5 (cut-off frequency =

20 Hz). Data is then segmented using 30 second windows sliding at 1 second.

4.2.2 Feature Extraction. Our feature set aims to encode the relevant information about the motion of the

temporalis muscle when the user’s jawmoves. For each 30 second window, we compute 78 features to characterize

jaw movement while chewing. These features are essentially 13 features computed for each axes of the gyroscopes

placed on the ear and back (i.e., 13 features × 3 axes × 2 sensors = 78 total features).
When a user chews, the jaw moves, and the back-of-the-ear IMU picks up the motion. In an ideal case,

energy or magnitude alone will be very high for such motions and low when the user is doing some other

activity. However, a user performs many activities that can generate significant motion that gets recorded on the

behind-the-ear gyroscope; walking and talking are common examples. Figure 4 shows example data from the

y-axis of the gyroscope when the user was talking, then transitioned to eating, and then walking. One valuable

insight captured by Figure 4 is that chewing motion is more periodic than many other activities, such as

talking. On the other hand, walking and some other large motions (e.g., exercises) are also periodic. Though in

some cases the overall magnitude of motion while walking is significantly larger, it won’t always be true. For

such cases, a separate IMU on the body (in our experiments behind-the-neck IMU, but in practice a wrist-worn

or pocket-held device) can be used to detect these large motions, as shown in other research related to activity

recognition [4, 18, 19]. Next, we list our 13 features that capture information about the magnitude and periodicity

of motion for different axes and sensor locations. These features include time and frequency domain features

that are commonly used in recognizing human activities from inertial data. Size of the FFT is same as the size

of the feature calculation window (i.e, 30 seconds = 1500 samples). In [26]. Morris et. al. introduced a set of 5

features based on signal auto-correlation to reliably recognize repetitive strength-training exercises using inertial

sensor. In general, the auto-correlation of any periodic signal with frequency f will produce another periodic

signal with peaks at lag 1/f, while a signal that has no periodic component will produce no peaks when it’s

auto-correlated. Just like strength-training exercises, chewing produces repetitive motion that can be captured

using same features. Hence, our features set also includes auto-correlation features, and were computed using

the same methods as applied in [26].

(1) Magnitude of motion.

(a) Root Mean Square encodes the amount of energy in the signal.

(b) Variance is square of RMS and encodes similar information. Having both RMS and variance can

provide flexibility if there is non-linearity in some axes.
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(c) Entropy reflects the amount of information (or conversely noise) in the signal. Entropy tends to

be a strong feature in detecting silent and noisy activities, such as silence and speech. The normal

formula for Shannon’s entropy was used to compute the entropy feature, but the bins are predefined

in increments of 10, ranging from -50 to 50. The outliers were assigned to a separate bin.

(d) Peak Power is the magnitude of the dominant frequency of the signal. If a signal is fairly repetitive

(e.g., eating and walking in Figure 4), the magnitude of the main frequency can indicate the intensity

of motion, and can help in differentiating between facial and whole-body motions.

(e) Power Spectral Density is magnitude of power spectrum in logarithmic scale.

(2) Periodicity of motion.

(a) Zero Crossing captures the rough estimate of the frequency of the signal.

(b) Variance of Zero Crossing. Zero crossing is going to be high for any high-frequency data, and

can be severely affected by noise. We calculate the variance in the times at which signal crosses zero,

to record the periodicity of zero crossings.

(c) Peak Frequency is the dominant frequency of the signal, calculated through a frequency transfor-

mation.

(d) Number of Auto-correlation Peaks. Abnormally high or low number of peaks here indicate noisy

signal.

(e) Prominent Peaks are the number of peaks that are larger than their neighboring peaks by a

threshold (0.25). Higher number of prominent peaks suggest a repetitive signal.

(f) Weak Peaks are the number of peaks that are smaller than their neighboring peaks by the same

threshold (0.25) as Prominent Peaks.

(g) Maximum Auto-correlation Value is the value of the highest auto-correlation peak. A higher

value suggests very repetitive motion.

(h) First Peak is the height of the first auto-correlation peak after a zero crossing.

4.2.3 Feature Selection. Given the large number of computed features, we introduced a feature selection step

in our pipeline. This step helps in avoiding the curse of dimensionality and enhances the generalizability of our

eating detection models by reducing overfitting.

We implemented the feature selection process using the sequential forward floating selection algorithm (SFFS),

which is proven to be very effective in searching for optimal feature set [32]. For feature evaluation, we used

random forest classifiers to build models using out semi-controlled lab dataset. A leave-one-user-out cross

validation was performed at each step, and the exclusion and inclusion criteria for features was based on the

F1 score of chewing detection.

The SFFS algorithm selected 34 out of 78 features as most effective for eating detection. These 34 features

came from all 13 feature types across different axes. The most common selected feature types are entropy, peak

frequency, the number of auto-correlation peaks, and first peak after a zero crossing.

4.2.4 Recognition. We use Random Forests (implemented with the Scikit-learn toolkit in Python) and leave-

one-user-out validation to avoid overfitting. Furthermore, we keep all Random Forest-specific parameters at their

default values to avoid any manual overfitting. This is where Random Forests are especially useful because they

do not need much manual tuning and the only major parameter is the size of the trees. However, with separate

feature selection phase, we do not need to control the size of the trees as well in most cases. Therefore, we only

optimize some of our windowing parameters and we will discuss those in detail later in this section.

Detecting Chewing

The labels in the Aware Home dataset included: chewing, walking, talking, stationary, drinking, and other. Due

to the very low number of occurrences in the dataset, the latter two labels, which represented 5.3% and 1.2%

of the dataset respectively, were removed from training and classification tasks. Completely removing these
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Fig. 8. An example of conversion of confidence values from Random Forests to frame-level results (chewing) and then to

event-level predictions (eating episodes).

instances from the dataset would skew the timeline. Therefore, the algorithm simply skips these instances during

training and classification tasks, but still uses the sensor information to calculate features for other instances

(remember that the features are calculated over 30 second windows). In our dataset with 26% of data points

labelled as chewing. This happens because our training data was collected in a social setting when the group of

participants were socializing and a significant amount of time was spent eating. While this is not representative

of an average day in a user’s life, it provides us with some robust training data.

In contrast to the Aware Home dataset, the Outside-the-lab dataset only had two labels: chewing and not-

chewing. However our machine learning models made a four-class classification: chewing, walking, talking, and

stationary. Instead of changing the classifier’s output classes to match the labels used in the Outside-the-lab

dataset, we simply treat all non-chewing predictions as ”not-chewing”. Therefore, when we report results in

Section 5, we convert our performance metrics to reflect the performance of a binary classifier. In the interest of

uniformity, we do this conversion to binary classification for both the semi-controlled lab (Aware Home) data set

and the Outside-the-lab datasets.

The machine learning model produces recognition results every 1 second (recall that we used 30 second

windows sliding by 1 second). Since, there is seldom any need for 1 second resolution for chewing inference,

we apply a moving average on the confidence value returned by the Random Forests. Consecutive values were

averaged together to produce the new confidence value for each second. The moving average window was

centered on the value to be predicted. The size of moving average window (optimal value = 35 samples) is tuned

using the Aware Home dataset.

The output of the filter is converted into a binary decision by using a simple threshold of 0.5. An example of

this post-processing is shown in Figure 8. The result of this tuning procedure will be discussion in Section 5.

Detecting Eating: Aggregating Chewing Inferences

Although EarBit acts as a chewing sensor, most users will be interested in identifying eating events. We aggregate
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individual chewing inferences into eating event inferences through a two-step process (shown as the last step in

Figure 8): merging of events and filtering short events.

Merging of events helps in removing sporadic discontinuities in eating recognition. This is based on an

assumption that a user won’t have two meals within 10 minutes of each other. Therefore, we merge all labeled

and recognized eating events that occur within 10 minutes of each other. Here, we understand that time cannot

be the only factor in segmenting meals. For example, a user might start eating an apple, leave for an urgent

meeting, and then come back to continue eating the fruit. Perhaps a richer understanding of the user’s activities

and intent would be necessary, but that is not the focus of this paper.

In addition to the merging step, we added a second layer of filtering to remove small isolated events that are

less than 2 minutes in duration. This filtering step comes at the cost of skipping very short snacks, which is a

compromise we made to improve precision in detecting full meals and snacks that are longer than 2 minutes.

Overall, we minimize the number of tunable parameters in our approach; Random Forests also implicitly

minimize the need of tuning parameters (as discussed earlier). Therefore, the only tuning parameter for EarBit is

the size of the moving average filter. All other parameters were based on domain knowledge and assumptions

about the user’s behavior. For example, for merging events, we assume that a user won’t have two separate meals

within 10 minutes of each other. This assumption was also confirmed when we analyzed the video recordings.

None of the tunable and human-set parameters were optimized using the outside-the-lab dataset. That dataset

was collected to evaluate EarBit’s performance and we made sure that none of EarBit’s parameters were optimized

on it.

5 RESULTS

In this section we will discuss EarBit’s performance in detecting eating in our two studies. We started by

developing and validating our algorithm on the Semi-Controlled Lab dataset and then we used those models to

evaluate performance of the Outside-the-lab dataset. We completely sequestered the data from the Outside-the-lab

dataset and analyzed it only after the algorithm was ”frozen”, that is, after satisfactory validation on the Aware

Home dataset. This was done to avoid any unintentional and manual overfitting on the test data.

For evaluation, we test the algorithm’s performance on both frame-level (chewing detection) and event-level

(eating episode detection). The main performance measures are F1 score, precision, recall and accuracy. For the

event level analysis, we also reported delay, which measures the time from the beginning of an eating event till

EarBit starts recognizing it. Additionally, we also measure coverage, i.e., what percentage of actual event was

recognized. For example, if a user spends 15 minutes having dinner, but EarBit predicts a 12 minute eating event,

then Coverage is 80%. In cases where the predicted event starts before or ends after the actual event, Coveraдe
can give artificially high results. However, we did not have any case where the predicted event exceeded the

time-bounds of the actual eating episode.

The main difference between coverage and recall as metrics in our evaluation is, recall is computed directly on

prediction values produced by Random Forest. While coverage is computed after applying the filtering steps on

the prediction results as shown in figure 8

5.1 Validation on Semi-controlled lab dataset

To validate the performance of EarBit’s algorithm, we used leave-one-user-out cross validation. We used these

validations to tune our only tunable parameter: size of the moving average window.

Figure 9 shows chewing recognition results for semi-controlled lab study as a function of the moving average

window size. The results stabilize at 35 seconds mark. EarBit’s cross-validation accuracy is 90.1%, F1 score is

90.9%, precision is 86.2%, and recall is 96.1%.

For the event-level performance, with a 35 seconds moving average window, EarBit captured all 15 eating

events in the dataset, and falsely recognized one non-eating episode as eating. It achieved 89.6% coverage and
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Fig. 9. Chewing recognition results for semi-controlled lab

the average delay in event recognition is 21.3 second. Once the moving average size and the machine learning

models were final, we evaluated its performance on the Outside-the-lab dataset.

5.2 Outside-the-lab Study

For the Outside-the-lab data, with a 35 seconds moving average window, EarBit detects chewing with an accuracy

of 93% (F1 score = 80.1%, Precision = 81.2%, Recall = 79%). When converted into eating episodes, EarBit successfully

recognized 15 out of 16 eating episodes, and it only falsely recognized 2 additional eating episodes. The average

delay is 65.4 seconds and the mean coverage is 72.2%. After reviewing the dataset we found that during the

2 falsely recognized events the participants were talking, and for the single miss-classified eating event the

participant was eating a frozen yogurt. Since our models was trained on chewing instances, this explains why

events that don’t contain regular chewing such as eating ice cream or soup cannot be fully recognized

As we discussed earlier, the filtering step was added to help reduce the number of false recognized eating events.

To evaluate the effect of this filtering step, we also ran our analysis after excluding it from the pipeline. As expected,

the number of false positives increased to 10 for the semi-controlled lab dataset and 20 for outside-the-lab dataset.

6 DISCUSSION

The overall results from the semi-controlled lab study and outside-the-lab study show that EarBit was successful

in detecting eating with high accuracy outside the lab. EarBit was able to recognize accurately almost all eating

events in both environments we tested it on. The sole falsely recognized eating event was eating frozen yogurt,

which doesn’t contain the regular chewing activity that our model is trained on. The high event coverage values

(89.6% in-the-lab and 72.2% outside-the-lab) indicate EarBit capability in automating the food journaling process

with a precise logging of meals and snack duration’s. EarBit also requires about a minute to recognize an eating

episode. This low delay values allows EarBit to be used in applications that require just-in-time interventions.
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6.1 What it means for the end user?

The outside-the-lab study has 45 hours of recorded data. In this duration, EarBit had only 2 falsely recognized

eating events. If we assumed that a typical user sleeps for 8 hours a day, our dataset has approximately 3 days

worth of daily activities. That means that EarBit generates 0.7 false positives per day. For a typical user who eats

3 to 6 means and snacks daily, the false positives do not pose a significant usability challenge. Although this

extrapolation would not always be accurate, it provides a reasonable trend of the results.

By reviewing our outside-the-lab dataset, we found that the falsely recognized events are mostly due to talking

activities. After visualizing the entire dataset, we found a total of 26 talking events. EarBit has only classified

7.6% of them as eating. We believe the features set we used helped in correctly recognizing most of these events

as non-eating, but using EarBit with a modified user interface can improve its precision by incorporating more

data from the user. For example, as soon as EarBit detects an eating event it can prompt the user with a question

”Are you eating?”, if the user’s response was positive the system carries on with the food journaling process, but

if it was negative the system can ask the user for a label ”So what are you doing?” and then utilize this instance

to generate a better user adaptive model.

6.2 Study design

Eating detection in most laboratory settings lacks ecological validity. At the same time it is often hard to collect

accurate data in unconstrained environments. Our study design aimed to solve both problems. Researchers

equipped the Aware Home for recording and monitoring various eating scenarios. At the same time, the nature

of a house facilitates normal interactions and eating behaviors. Thus, the researcher is able to control the

environment while the participant behaves in a more natural manner. However, it was obvious to the participants

that they were video recorded and the researchers were present as well. These factors meant that the setting

wasn’t entirely natural. Moreover, the proportion of eating events was higher than an average day in a user’s life.

We addressed some of these issues in the outside-the-lab study. As the participants used the system in their own

environments, the proportion of eating events was more natural in this study, but they had a chest-mounted

camera for groundtruth. Hence, the data collection was not entirely naturalistic here as well. We believe our

fine-grained labeling of activities, and the protocol of training and evaluating the model on data from significantly

different settings produced repeatable and generalizable results. However, the quest for a true evaluation of

eating activity in unconstrained environments remains unfinished.

We believe our study can serve as a good starting point for future studies on eating detection, and we hope

other researchers use and improve our pipeline to detect activities - like eating - in unconstrained environments.

6.3 Self Reporting

Self-reported eating is the predominant method used to record eating in unconstrained environments. However,

this method of reporting is known to be inaccurate. For example, in a laboratory setting [5] found that both

people with and without eating disorders under-reported eating.

During our study, we found multiple issues with self reporting. When comparing ground truth between

video footage and self report obtained from collecting data in unconstrained environments , we found that some

participants forgot to report eating episodes, reported best guess eating times, and/or reported best guess eating

durations. One participant reported the following:

”1:00 A.M.: Snacking some during movie

19:32 snacking some more

(There was probably more but I don’t remember how long it went)”

Another participant said, ”I forgot I was wearing the device and got caught up in a conversation we were having over

lunch, so I totally forgot to write down what time I started eating. I think I ate for about 30 minutes”. Participants in
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the study were provided monetarily incentives to report eating activity, yet on occasion they still forgot to report.

From this discussion, it is probable that many studies involving self-reported eating suffer from inaccurate and

incomplete data. Since our evaluation tests the system’s performance on how accurately it recognizes chewing

instances and eating events, we had to obtain more reliable ground truth. To overcome this issue, we decided to

equip participants with a wearable camera to record their activities outside the lab. This condition imposed some

limitation on the session duration due to the short battery life of the camera. The camera also can impose some

restriction on the user behavior, but we believe this is a reasonable compromise for obtaining a reliable ground

truth in unconstrained environments.

6.4 Form Factors

During our pilot study, we realized that in some cases the behind-the-ear IMU was not placed properly and was

floating. Almost half of the earpiece was above the pinna, instead of being behind it. This issue meant that the

sensor was not coupled to the temporalis muscle. We solved this issue by demonstrating the correct way to put

the device to our participants and giving clear instructions to make sure that the sensor is placed properly. We

largely succeeded in making sure there were no placement issues and a review of the video footage showed

that there were no visible placement issues with the sensors. However, when a device like EarBit is used in the

real world, it would be important for the system to be resilient and adaptive to placement issues. In our future

prototypes, we are experimenting with embedding the sensor in eye-glasses and using firmer silicone mounts in

case of earbuds.

7 CONCLUSION

In this paper, we introduced EarBit, a wearable system that detects chewing instances and eating episodes in

unconstrained environments. We started by evaluating three sensing modalities: optical, inertial and acoustic,

and ended up settling on a behind-the-ear inertial sensor.

To assess the performance of EarBit, we conducted studies both in a semi controlled lab environment and

outside-the-lab studies. In the former environment, participants engaged in a variety of prescribed activities,

including eating, talking, walking, etc. Data from this study was used to train a supervised machine learning

model. Next, we tested the model against data collected from our outside-the-lab study, and the trained model

was found to detect chewing at the frame level with an accuracy of 92% and an F1 score of 80%.At the event level

evaluation in unconstrained environments , EarBit accurately recognized all but one recorded eating episodes,

which ranged from 2 minute snacks to 30 minute meals. EarBit brings us one step closer to automatically

monitoring food intake, which can ultimately aid in preventing and controlling many diet-related diseases.
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