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�e ability to monitor eye closures and blink pa�erns has long been known to enable accurate assessment of fatigue
and drowsiness in individuals. Many measures of the eye are known to be correlated with fatigue including coarse-grained
measures like the rate of blinks as well as �ne-grained measures like the duration of blinks and the extent of eye closures.
Despite a plethora of research validating these measures, we lack wearable devices that can continually and reliably monitor
them in the natural environment. In this work, we present a low-power system, iLid, that can continually sense �ne-grained
measures such as blink duration and Percentage of Eye Closures (PERCLOS) at high frame rates of 100fps. We present a
complete solution including design of the sensing, signal processing, and machine learning pipeline; implementation on a
prototype computational eyeglass platform; and extensive evaluation under many conditions including illumination changes,
eyeglass shi�s, and mobility. Our results are very encouraging, showing that we can detect blinks, blink duration, eyelid
location, and fatigue-related metrics such as PERCLOS with less than a few percent error.
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1 INTRODUCTION
While wearable devices provide insight into a variety of physiological and health conditions, one aspect that has
lagged behind is our ability to infer an individual’s cognitive state in the natural environment. �ere is signi�cant
need for a device that can continuously monitor fatigue, since this has implications for a wide range of application
domains ranging from personal safety to health monitoring. While research in this �eld has predominantly
focused on monitoring drowsy driving to help reduce driving fatalities (there were 846 drowsy-driving-related
fatalities in 2014 [7]), it is far from the only scenario where fatigue tracking is bene�cial.
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Fatigue has been shown to be a predictor of addictive behavior, a measure of quality of life, and a mediator
between sleep and health outcomes. Addiction research has shown that sleep deprivation and sustained use of
executive function lead to fatigue even in healthy individuals. �is impairs self-control which in turn increases
substance use, smoking behavior, and alcohol use [68]. Substance use can, in turn, increase daytime fatigue
leading to safety hazards or low work performance [23, 62], but ironically, the process of trying to withdraw
from addictive substances (even ca�eine) can also trigger fatigue and drowsiness [41, 42]. �e ability to monitor
fatigue in real-time can allow us to predict relapse and trigger timely interventions, which is a key focus of
mobile health research (e.g., the NIH Mobile Data-to-Knowledge (MD2K) center [9]). Monitoring fatigue in the
natural environment can also complement our ability to monitor circadian rhythms and sleep pa�erns [10, 32],
which can provide a holistic view of sleep, fatigue, and health outcomes. Finally, fatigue measurement in natural
se�ings is also important to understand how to improve quality of life for cancer patients [18, 50], parkinson’s
patients [35], multiple sclerosis patients [26, 44], as well as increase awareness of mental state among the general
public and improve regulation of the levels of stress in our daily lives [15].
�e plethora of health and safety conditions that are linked with fatigue have made it the subject of much

clinical research on how to estimate the level of fatigue. One modality that has long been known to provide a
good measure of fatigue is eye monitoring. Many decades of experimental studies involving eye monitoring have
identi�ed that eye closures, blink duration, and blink frequency are the most signi�cant features of interest for
predicting the level of fatigue [38, 59, 63, 67].
Despite our understanding of how to measure fatigue, we lack good instruments to measure these eye

parameters robustly in natural se�ings. In constrained environments such as vehicles, the environment can
be instrumented with cameras to allow remote monitoring (although robustness to illumination changes and
other dynamics remains a challenge). Alternately, commercial eye trackers intended for short-term episodic
use can provide such measures and have been available for more than a decade (e.g., SMI [1] and Tobii [6]).
But transitioning from technology that works in episodic and controlled se�ings to natural environments has
been challenging. Most wearable eye trackers that provide high-resolution data are bulky and power-hungry,
have poor performance in outdoor se�ings, and are not suitable for continuous daily wear. A promising eye
monitoring device that bridges the gap towards daily wear is the JINS MEME [4] eyeglass. �is device uses
electrooculography (EOG) sensors placed at the nose-bridge. However, this method, as we show in this paper, has
shortcomings in measuring subtle eyeball and eyelid movements while being susceptible to noise. �us, there is a
need for a truly wearable device that is low-power, portable, and provides accurate measures of eyelid movement,
while being robust to confounders present in everyday scenarios.

Our goal in this work is to develop such a wearable solution. �e key questions underlying such a design
are robustness and power consumption. From a power perspective, cameras consume signi�cant power if used
continuously, particularly at high frame rates of around 100fps that is recommended for extracting fatigue features
from the eye [57]. While there have been e�orts to reduce this by leveraging sparse sampling techniques [47, 48],
these have focused on eye tracking rather than eyelid tracking that we need for monitoring fatigue. From a
robustness perspective, the key question is whether a real-time fatigue monitoring system can be robust to face
shape, illumination (indoor and outdoor), mobility (stationary vs. walking), eyeglass position (sliding down the
nose), and so on. A wearable device needs to be universally applicable under a wide range of conditions.

In this paper, we design a system, iLid, that is able to extract key features of fatigue at low power and high frame
rate from a wearable eye tracker. Our contributions are two-fold. First, we develop methods that can dramatically
reduce the cost of sensing and processing by sampling a small subset of pixels on an imager (a few columns of
pixels) and processing these pixels in real time to extract the salient features for fatigue detection. We develop
lightweight classi�cation-based methods to extract blink and eyelid features such as blink duration, blink rate, and
eyelid closure pa�erns. Second, we provide an exhaustive characterization of robustness of the technique under
many se�ings including lighting conditions, eyeglass slippage, and user mobility. We also compare against a
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state-of-the-art wearable EOG eyeglass, the JINS MEME [4], to understand the relative strengths and weaknesses
of vision-based versus EOG-based fatigue measures.

Our results show that:

• iLid can detect blinks with high precision (above 95%) and high F1 score (about 0.90), blink durations with
low error of 2.4%, and PERCLOS with accuracy of 97.5% in both indoor and outdoor conditions. Such low
error is within the margin of error for human ground-truth labeling, and exceeds current state-of-the-art
performance [13, 31, 56].

• iLid is robust to variability that occurs in mobile se�ings including outdoor illumination changes, eyeglass
shi�s, user mobility, and eye state - these confounders are typically not considered in the literature.
Typical variability along these axes have negligible impact on the accuracy of estimating di�erent metrics.
We also show that iLid is superior to current wearable electrooculography (EOG)-based methods for
estimating fatigue measures.

• Our methods can run in real-time on a low-power eyeglass platform with a low-power imager and
micro-controller. We show that our system has an end-to-end power consumption of 27mW at 60Hz or
46mw at 100Hz including the cost of running the imager, data acquisition, and computation.

2 RELATED WORK
�ere is a large body of literature related to general eye tracking, and there has been extensive work in the
speci�c area of cognitive fatigue detection - primarily focused on its application in driver drowsiness detection.
Our core contribution is the development and evaluation of a robust on-body fatigue detection system capable
of working across a wide spectrum of natural environments. Hence, we focus our literature survey on other
relevant e�orts and ask two questions: a) how applicable are these methods to mobile scenarios?, and b) how
extensively have these methods been evaluated in realistic natural se�ings?
Due to the size and complexity of the literature on this topic, it is di�cult to �nd simple categories within

which all of the related studies �t comfortably. For the purposes of comparison with our work, we classify
the related studies into three categories based on the type of sensors used: (1) remote-camera-based methods,
which are designed to operate on data from a camera that is not worn on the body but rather mounted in a
�xed location, (2) wearable-camera-based methods, which operate on data from a head-mounted camera, and (3)
electrooculography-based methods, which measures the movements of the eye via electrodes a�ached to the skin.
We also brie�y discuss a fourth category: techniques that are based on eye movement tracking for measuring
fatigue via changes in ocular movement pa�erns, as opposed to tracking the motions of the eyelid.

2.1 Remote-Camera Methods
Many video-based fatigue studies use mounted cameras, generally referred to as “remote” cameras. �is auto-
matically limits the applicability to cases in which the user is seated in front of the camera for long periods -
generally, working at a desk or operating a vehicle. �is means that these methods are not suitable for measuring
fatigue ubiquitously, however, we include these studies for completeness and comparison.

�ere are two key aspects that distinguish this body of work from ours. �e �rst is that since the remote cameras
capture not only the eyes but also the entire face and other nearby imagery, the algorithms are considerably
more complex. As Table 1 shows, the algorithms o�en require computationally-intensive feature extraction,
segmentation, classi�cation, estimation, and other approaches. At a high level, our pipeline is not very di�erent
since we have to follow a similar pipeline from denoising to classi�cation; however, the complexity is signi�cantly
less (and accuracies higher) when the imager is directly obtaining an image of the eye at close proximity.
Second, most of these devices do not actually measure eyelid location accurately and therefore implement an
approximation instead of the true Percentage of Eye Closure (PERCLOS) as de�ned by the NHTSA, which is the
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Work Algorithm Autonomous Evaluation
Scenarios Metrics Calibration

Garcia et al.[31] V-J + projection No XDriving
⇥ Illumination PERCLOS One-shot

Pauly & Sankar [55] HOG + SVM No ⇥ Driving
⇥ Illumination Open/closed None

Hong & Qin [36] Haar + projection
+ motion

Yes
12 fps

XDriving
⇥ Illumination Open/closed None

Xu et al.[70] LBP + classi�er No ⇥ Driving
⇥ Illumination Open/closed None

Dasgupta et al.[24] Haar + LBP + PCA
+ SVM + transform No XDriving

XIllumination Open/closed None

Bergasa et al.[16] Filter +
state machine No XDriving

XIllumination
PERCLOS
Blink feat. None

You et al.[71] Haar + classi�er
+ template + �lter

Yes
30 fps

XDriving
⇥ Illumination Open/closed None

Malla et al.[45] Haar + Kalman
+ template No ⇥ Driving

⇥ Illumination Open/closed None

Picot et al.[58] Filter + projection
+ classi�er + energy No ⇥ Driving

⇥ Illumination Blink feat. None

Boverie & Giralt [17] Template + Kalman
+ motion No XDriving

⇥ Illumination Blink feat. Repeated

Grauman et al.[33] Motion + �lter
+ template No ⇥ Driving

⇥ Illumination Blink feat. None

Bacivarov et al.[14] V-J + AAM No ⇥ Driving
⇥ Illumination Blink det. None

Lee et al.[43] AdaBoost + template
+ �lter + SVM No ⇥ Driving

XIllumination Blink det. None

Drutarovsky
& Fogelton [25] V-J + motion +

state machine No ⇥ Driving
⇥ Illumination Blink det. None

Sukno et al.[64] Haar + ASM No ⇥ Driving
⇥ Illumination

PERCLOS
Blink feat. None

Chau & Betke [22] Filter + template
+ motion No ⇥ Driving

XIllumination Blink feat. None

Smith et al.[61] Filter + motion
+ template No XDriving

XIllumination Open/closed None

Morris et al.[52] Motion + template No ⇥ Driving
⇥ Illumination Blink det. None

Pedro�i et al.[56] Proprietary + �lter No ⇥ Driving
⇥ Illumination Blink feat. None

Wu & Trivedi[69] Particle �lter +
dynamical modeling No XDriving

⇥ Illumination Blink feat. None

Table 1. Comparison of fatigue monitoring studies based on direct-from-video techniques. Parameters insu�icient for
real-time fatigue detection in a realistic driving se�ing highlighted in bold.

percentage of frames when the eyes are more than 80% closed excluding the blinks [65]. �is is primarily because
it is di�cult to extract eyelid location from video at a distance in a reliable manner. �us, these e�orts primarily
report open and closed states of the eye which is less precise for fatigue detection. �ird, many of these methods
are not evaluated on real embedded system or under real-world dynamics such as illumination variations. For
example, only a couple try to systematically evaluate under di�erent illumination se�ings.
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Work Algorithm Autonomous Evaluation
Scenarios Metrics Calibration

McIntire et al.[49] Proprietary +
time series No ⇥ Driving

⇥ Illumination
Mean

velocity One-shot

Appel et al.[13] Filter +
random forest No XDriving

⇥ Illumination Blink None

Fuhl et al.[28] Filter +
edge detection No XDriving

⇥ Illumination
PERCLOS
Blink None

Jiang et al.[40] Filter +
template No ⇥ Driving

⇥ Illumination Blink One-shot

Table 2. Comparison of wearable-camera-based methods. Parameters insu�icient for real-time fatigue detection in a realistic
driving se�ing highlighted in bold.

2.2 Wearable-Camera Methods
Using head-mounted video recording systems and computational eyeglasses which do real-time data process-
ing [30] can alleviate the mentioned problems by providing a close-up view of the eye, thereby eschewing the
need for face and eye detection. �ere are many imager-based solutions commercially available such as those
o�ered by SMI [1] and Tobii [6]. �ere are signi�cantly fewer studies that explore blink detection and fatigue on
wearable eye trackers. �is is most likely because commercial head-mounted eye tracking systems implement
blink feature metrics by default, so the few studies on this topic are either a�empting to improve the performance
of these systems or implement blink features on systems that do not have them pre-installed. �e literature is
summarized in table 2, see section 2.1 above for a detailed description of the categories.
On the surface, it seems that these commercial wearable devices are an excellent candidate for our purposes.

However, there are a number of signi�cant practical challenges with the use of these devices for continuous
fatigue measurement. �e �rst is that commercial wearable gaze trackers are well-known in the literature to
fail under varying illumination conditions, especially outdoors [39, 66]. �is makes them a poor choice for
continuous gaze measurement in any environment other than an indoor se�ing. �e second major issue is that
the devices tend to be bulky and uncomfortable, with a ba�ery life rarely exceeding 2 hours and never exceeding
4 [8]. �ird, these devices are mostly passive recording systems intended to store data for post-hoc processing
since the algorithms used generally require desktop-grade processing power. Such devices are incapable of
autonomous fatigue detection and therefore cannot provide live noti�cations of fatigue onset, which is a necessity
for safety-critical applications.

2.3 Electrooculography (EOG) Methods
�ere are a number of techniques for evaluating fatigue using physiological markers instead of video of eye
movements. �ese include electroencephalogram (EEG) [34] and heart-rate variability (HRV) [54], but most of
these techniques require a�aching an array of complex sensors to the body and thus are not suitable for use in
natural environments. �e notable exception is electrooculography (EOG). EOG measures eye movements by
leveraging the fact that human eye is a magnetic dipole, so electrodes placed on the skin near the eye can detect
a change in electric potential as the eye moves. It is feasible for ubiquitous use as it requires fewer sensing points
than other methods, and thus can be wrapped into a wearable form factor (generally eyeglasses). Bulling et al.
have recently shown EOG metrics to be useful for recognizing di�erent types of activities via eye movement
pa�erns [19, 21]. �ere have been a number of studies a�empting to measure fatigue solely through EOG
metrics [29, 37, 46, 53, 60], but achieving high accuracy requires placing additional electrodes on the face to
ensure high-quality data. Steps towards miniaturizing the sensors have been made in the literature [20].
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On the commercial side, an intriguing EOG-based device that is designed to be wearable is the JINS MEME
eyeglass [4]. �e EOG electrodes are embedded in the nose bridge of the eyeglass, allowing it to monitor EOG
pa�erns during eye and eyelid movements. While this is an intriguing new device that can enable new applications,
studies of the EOG signals from the JINS MEME have also shown that it is limited in the resolution of tracking eye
and eyelid movements [12]. For example, the device has di�culty in tracking vertical eye movements. In terms
of eyelid closures, the EOG signal for full blinks seem to be su�ciently prominent that it can be extracted. But
�ne-grained measures and more subtle changes are hard to discern since the signal does not explicitly distinguish
between eye movements and eyelid movements. �erefore, a robust measure of the percentage of eye closure is
di�cult to extract from the signal. §5.3 provides an evaluation with JINS MEME to con�rm these hypotheses.

2.4 Fixation / Saccade Methods
Lastly, we note that there is intriguing work on using very �ne-grained eye movements - known as �xations
and saccades - to detect fatigue. At a high level, �xations are periods when the eye is relatively motionless,
whereas saccades are the rapid movements that occur when the eye changes orientation. Certain features of
these movements are known to be reliable indicators of the onset of fatigue.
However, there is not yet a body of work on using these metrics for any type of natural environment, even

driving. Saccade-based methods require extremely accurate eye position measurement, which is di�cult to
do under uncontrolled lighting, and extremely high measurement rates (250 fps or more), which wearable eye
trackers have not yet reached. Techniques that use �xation pa�erns are less technically restrictive to implement,
but also require that the user be presented with a speci�c stimulus so that their responses can be measured,
which is obviously not conducive to passive measurement in a natural se�ing. Ahlstrom et al. [11] performed a
fatigue-measurement study for drivers using these techniques, but due to the aforementioned limitations they
were restricted to testing the drivers’ fatigue state in a controlled immediately before and a�er the driving event.
We do not provide related studies in this area since there is not a strong comparison to be made with our work,
but we refer the reader to [51] for an excellent literature review of the state-of-the-art on this topic.

2.5 iShadow: A computational eyeglass
�e work described in this paper also builds on our own prior work where we described the design and implemen-
tation of a novel computational eyeglass, iShadow [47, 48]. �e key technical contribution was the use of sparse
sampling to detect gaze, eye saccades, and pupil dilation. iShadow [47]uses a neural network-based sampling to
detect gaze at 10fps, while consuming 70 mW of power, and follow-on work on CIDER [48] improved on this work
to estimate pupil center (for saccades) and pupil dilation while using a combination of sparse neural-network
based sampling together with a more optimized cross-sampling approach.

�ere are several key distinctions between the work in this paper and our prior work. First, this paper focuses
on eyelid-related measures that are relevant to fatigue, whereas prior work focused on eye-related measures such
as gaze, saccades, and pupil dilation. �e di�erence in the �nal objective changes our entire pipeline, starting from
the sampling method all the way to the signal processing and classi�cation techniques. Only the sensor platform
remains the same - we leverage the sub-sampling capabilities o�ered by iShadow but borrow no other aspect
of the pipeline from prior work. Second, this work places considerable emphasis on robustness in real-world
conditions and evaluates under a plethora of scenarios including illumination changes, mobility, and eyeglass
shi�s. �is emphasis is signi�cantly more pronounced than our prior e�orts. �ird, the shi� from pupil-based
measures to eyelid-based measures means that we had to collect a substantial amount of data exclusively for this
e�ort. As we describe in §4, previous datasets we collected with iShadow were at lower frame rate to capture full
frames, but these ended up missing blinks. �erefore, this meant an entirely new data collection e�ort for this
paper.
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Fig. 1. The upper eyelid detection pipeline: 1) 4 columns of pixels near the center of the image are sampled, 2) pixel values are
horizontally projected, 3) values are median filtered, 4) values are convolved with a box filter for edge detection, 5) specular
reflection is detected and removed (top), 6) pupil is detected and removed (bo�om), 7) the upper eyelid position is estimated.

3 iLid SYSTEM DESIGN
�e main challenge in designing iLid is managing the tension between a) the high-rate sensing and processing
needed for drowsiness estimation, b) the power- and resource-constrained nature of an eyeglass-form factor
device, and c) the need to ensure robustness under dynamic real-world se�ings. Since eye closures can be �eeting
(the minimum closure duration is about 150ms), prior work has suggested high frame rates of close to 100 fps to
ensure that few blink events are missed [57]. �e high frame rate results in signi�cant power consumption at the
imager as well as substantial computational load on the device to continually process frames and execute the
fatigue detection algorithm. For example, a typical low-power imager operating at 100fps consumes 120mW [3],
and generates data at 30 MBps. Handling such high volume of data and performing complex vision algorithms
requires substantial processing capability, which requires high-end processors which add another 100 - 200mW
to the overall cost. Storing raw data for future processing is equally, if not more, expensive. �us, the overall
power consumption of such a device would be a few hundred milliwa�s, making it unsuitable as a wearable.
While we clearly need to reduce how much data is generated by the imager and how much computation needs to
be performed, it is also critical to ensure robustness to real-world se�ings. �us, the key challenge that we face is
achieving high-rate operation at low power, while ensuring robustness to real-world dynamics.
iLid addresses this challenge using a signal processing and classi�cation pipeline comprising sampling opti-

mizations, domain-aware noise removal and �ltering operations, template extraction from the time-series data,
and lightweight classi�cation. All stages are optimized for power and computational e�ciency, while being
carefully tuned for high robustness.

3.1 Upper Eyelid Detection
�e �rst stage in our computational pipeline is upper eyelid detection (shown in Figure 1). Since we need to
operate at roughly 100 fps, this stage has to be both e�ective and e�cient. �is requires that we optimize both
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how we use the imager as well as how we compute on the data from the imager. Our pipeline is therefore simple
but carefully tuned to remove speci�c sources of noise that we observe.
Sub-sampling the image. Reducing the amount of data sampled at the imager is crucial to minimizing power
consumption and increasing frame rate. Our eyelid detection pipeline limits the sampling to only a block of 4
columns in the middle of the image, in which the upper eyelid is roughly in its highest position. Such column
sampling makes intuitive sense since we are focused on the eyelid; the use of a few columns rather than a single
column also helps to reduce noise that may be observed due to intrinsic noise in a low-power imager, specular
re�ection of the NIR LED on the image, and other such considerations.

Once the columns have been sampled, a basic pipeline for detection involves three steps: a) a simple denoising
method like median �ltering, b) convolution with a 1D edge detection method to detect edges, and c) identifying
the most likely edge corresponding to the upper eyelid position. But in order to make this pipeline robust, we
need to address a few noise sources.
Dealing with specular re�ections and pupil area. �e 1D edge detection �lter’s output typically peaks in
the region corresponding to the upper eyelid position due to the transition from the eyelid skin and eyelashes to
the iris and/or sclera area; however, there are occasions when the specular re�ection from the NIR LED and/or
the pupil generates a peak higher than the upper eyelid.
In a majority of cases, we can simply use prior knowledge of the size of the specular re�ection and pupil to

�lter them out. We know that the specular re�ection from the LED is highly localized and only a few pixels wide;
we also know that the pupil is less localized and between 15 and 25 pixels wide. We can leverage this to �lter out
these artifacts — for example, the specular re�ection has a particular form of a short interval containing a lowest
peak followed by a highest peak in the �ltered signal. Figure 1 shows an instance where the specular re�ection is
removed on the top row, and pupil is removed on the bo�om row.
We also experimented with increasing the number of columns used, and found that it can be useful in a

small number of instances where ambient NIR levels are very low and the specular re�ections have a strong
footprint. Since the iShadow platform has an NIR photodiode to measure external NIR levels, this can potentially
be leveraged to dynamically change the number of columns sampled (while sacri�cing some frame rate in the
process). An example is shown in Figure 2, where aggregating over more columns results in a cleaner signal. In
our experiments, we �nd that this optimization helps only in a small fraction of our data, so we do not dynamically
adjust the number of columns in our current computational pipeline. But it provides an avenue for further
optimization and personalization.
Dealing with �icker noise. Another noise issue that we face is �icker noise in the imager. We observe
�ickering in the imager’s video, which itself is caused by small di�erences between the frame rate of the imager
and the frequency of the lights in the environment. �e result is high frequency noise spikes in the output of
the eyelid detector. In order to deal with this problem, the output of the eyelid detector is passed through an
appropriately tuned low-pass �lter to remove such noise. Figure 3 shows the result of applying the low-pass
�lter to the output of the eyelid detector.

3.2 Blink Detection
Once the upper eyelid is detected, the next stage is to determine blinks (shown in Figure 4). �is stage operates
on a window of time series of eyelid positions extracted from the previous stage. Blink features and blink rate are
not only important measures on their own, but they are also integral to calculating the extent of eye closure
while the blinks are not occurring. Indeed, the standard PERCLOS metric is de�ned as the percentage of frames
when the eyes are more than 80% closed excluding the blinks [65].
Blink Pro�le Template. �e key idea in our method is that, while blinks appear to vary across individuals
and is in�uenced by the state of alertness, there is also signi�cant commonalities in their general structure. Eye
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(a) iLid’s output with sampling 4 columns (b) iLid’s output with sampling 11 columns

Fig. 2. Increasing the number of sampled columns to ameliorate the specular reflection problem: Figure (a) shows the noisy
eyelid detector output in the existence of specular reflection when sampling only 4 columns of pixels, while Figure (b) shows
the output of the eyelid detector for the same data segment a�er increasing the number of sampled columns to 11.

(a) Before applying low-pass filter (b) A�er applying low-pass filter

Fig. 3. Filtering the eyelid detector output: The high frequency noise in the raw eyelid detector output (a) is removed by
applying a low-pass filter (b).

blinks share the same pa�ern of a fast eye closure followed by a relatively slower eye opening (shown in Figure 5).
On average, eye closure takes about 60ms with a maximum velocity of 350mm/s and the eye opening takes about
120ms with a maximum velocity of 150mm/s [17]. While the general pa�ern of a blink does not change with the
user’s cognitive state, the actual duration of a blink could take from 100ms to more than 600ms depending on the
person and their alertness condition with 200ms being the normal duration of a blink [17]. As a result, it would
be reasonable to approximate the blink pro�le with the same pa�ern scaled horizontally with di�erent values
in order to model di�erent blink durations. Prior work has also discretized blink durations into three levels —
fast, normal, and slow blinks having a duration of 100ms, 200ms, and 600ms respectively [17]. We �nd out that
templates corresponding to these discrete blink durations are su�cient to capture most variations in our data,
and also allow us to compactly represent blink pa�erns.
Template Matching. �e fact that eyeblinks can be placed into a few categories based on their duration
and pa�ern makes template matching an ideal method for blink detection. For each of the three templates
(fast, normal, and slow depicted in Figure 5), we de�ne 5 keypoints which correspond to a speci�c duration,
slope pa�ern, and height for the blink shape. �e keypoints’ relative position in each blink pro�le is based on
experimental blink data and interpolated using cubic spline method to achieve a smooth curve resembling actual
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Fig. 4. Blink detection pipeline: 1) A moving window selects samples from the eyelid position sequence, 2) the template
matching scores over the window are generated, 3) the scores are used as feature vectors for a logistic regression classifier
that detects blinks, 4) detected blinks a�er eliminating redundant detections.

(a) Slow blink (b) Normal blink (c) Fast blink

Fig. 5. The three blink templates representing, from le� to right, slow, normal, and fast blinks. The templates are horizontally
scaled versions of the same blink profile defined by the five key points A through E which have been interpolated using cubic
splines. Points A and E determine the duration of the blink T . Point B si�ing at 0.25T on the horizontal axis determines the
height of the blink H . Points C and D which give a slide pa�ern to the blink profile in the eyeopening phase of the blink have
relative coordinates of (0.5T , 0.45H ) and (0.9T , 0.02H ), respectively.

experimental blink data. �e blink pro�le is then scaled horizontally to create three templates with durations of
100ms, 200ms, and 600ms for fast, normal, and slow blink categories respectively.

�e template matching process is a simple normalized cross-correlation computation. We normalize the eyelid
position time-series to remove di�erences in the height of the blink across individuals. �en we sweep the eyelid
data with each of the templates and calculate the dot product of each subsection with the corresponding template
to obtain a similarity score c(u) corresponding to the interval [u,u + template len�th] of the eyelid position
time-series with each template. �is is shown below:

c(u) =
1

len(T )

u+len(T )�1’
x=u

�
f (x) � f̄ (u)

� �
T (x � u) � T̄

�
�f �T

(1)

where f (x) is the eyelid position time series, T (x) is the template, and �f and �T are standard deviations of f and
T respectively. Also, f̄ (u) and T̄ represent the DC values of eyelid position data and the template respectively.
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(a) Before duration fix (b) A�er duration fix

Fig. 6. Blink duration fix: The rough position of the blinks is first detected(a) and then a local search is performed to locate
the ending points of the blinks(b).

Blink detection as classi�cation. �e template matching stage gives us the result of matching with three
templates — fast, normal, and slow blinks. Given the scores, we then need to detect whether a blink occurred i.e.
we need to map from a continuous output (matching scores with the three templates) to a categorical output
(blink vs. not-blink). We can view the problem of detecting blinks as a standard binary classi�er learning problem.
�e input is a short window of scores from the templates as shown in Figure 4 (window length is seven in our
implementation), and the output is whether the window corresponds to a blink or not.
While we can apply any binary classi�cation model, a linear logistic regression classi�er [27] is particularly

a�ractive due to its low computational complexity. A logistic regression classi�er, in our case, involves 21
multiplications and 21 additions, which can be easily computed on a microcontroller.

Given a feature vector x consisting of D features, the binary logistic regression classi�er returns the probability
that the feature vector belongs to the positive class. Le�ing Y represent the label for the instance x, logistic
regression computes the class probability as shown below. � is a length D vector of feature weights. D = 21
in our case given the fact that we are using a window of size seven for each of the three template scores. �e
classi�er has a linear decision boundary speci�ed by the weights � .

P(Y = 1) = 1
1 + exp (�(�>x + b)) (2)

�e default classi�cation rule when using linear regression is to predict that the data case belongs to the
positive class if P(Y = 1) > 0.5. Learning the weights of the logistic regression classi�er is accomplished by
maximizing the log likelihood of the training data using numerical optimization [27]. �is is a continuous, convex
optimization problem with no constraints. It can be solved using any gradient-based optimizer. Given a data
set D = {(�n , xn)}1:N , the log likelihood function is de�ned as shown below. We assume the labels for the two
classes are �1 and 1.

L(� ,b |D) = �
N’
n=1

log
�
1 + exp(��n(�>xn + b))

�
(3)

�e above pipeline comprising template matching followed by classi�cation provides two key advantages. �e
template matching stage allows us to take advantage of domain knowledge regarding the shape of blinks. �is
makes the system more robust to spikes in the data that can be mistaken as blinks by alternate methods. �e
classi�cation stage allows us to map from the continuous measures that we get from the template matching to a
categorical output of blinks or not blinks.
Since the classi�er can detect multiple overlapping time windows as blinks, the nominated blinks are then

pruned based on a minimum time window condition to remove redundant blink detections.
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Blink Features Extraction. So far we have only detected the location of eye blinks. But we also want to
extract features from the blinks, for example, the exact duration of the blink or the height of the blink. In order to
do so, a window of eyelid position time-series around each of the detected blinks is smoothed with a mean �lter
and then a local search is performed starting at the lowest value in the window (i.e. the point where the eye is
closed). �e time-series is searched both forwards and backwards to �nd the �rst points, which satisfy either
of the following two conditions in each search direction: the �rst condition is for the slope value to cross zero
and the second one is for the height to reach a margin of the upper eyelid position baseline. �e �rst points, in
each search direction, that meet either of these conditions are chosen as the blink ending points. Figure 6 shows
this process. First, the points corresponding to blinks are detected and then the blink duration is extracted by
running the local search around the detected points.

3.3 Drowsiness Estimation
Once blinks are detected and their durations are measured, the corresponding frames are removed from the upper
eyelid position time series in order to measure drowsiness or fatigue. Many measures of drowsiness are possible
based on measures of eyelid position, blink occurrences, and blink duration that we extract in our computational
pipeline. We illustrate using a common measure to measure drowsiness, Percentage of Eye Closures, or PERCLOS.
For PERCLOS estimation, we need to estimate the number of frames in which the eye is more than 80% closed
compared to when the eye is fully open. �erefore, we need to have a baseline of the eyelids’ position when the
eye is fully open vs. fully closed. In order to do this, we perform a one-time calibration for each user where we
ask the user to fully open and close their eyes. �is gives us one image from each eye state — fully open and fully
closed. Note that it may be possible to avoid calibration by assuming that the largest variation in eyelid position
corresponds to the open and closed states. We performed explicit calibration in our current system since we
noticed that some subjects tend to not fully close their eyes while they blink. For example, as you can see in
Figure 7, the only times when the subject’s eyes are fully closed during blink are the two blinks that happened at
time i ndices of about 1600 and 1675. During the calibration the subjects are asked to fully close and then open
their eyes. �e minimum and maximum upper eyelid positions computed from the eyelid detector algorithm are
then used to estimate the position of the lower eyelid as well as the size of the eye in the fully open state, and
used to compute the percentage of eye closure. With this information, we can measure PERCLOS as the fraction
of the frames in which the upper eyelid position is lower than the calculated threshold (Equation 4) over a one
minute window.

Fig. 7. Upper eyelid location time series
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Fig. 8. Eyeglass platform containing an eye-facing imager, two NIR LEDs, and a PCB board with the micro-controller,
Bluetooth, and other modules on the le�, as well as the ba�ery board on the right.

Threshold = Upper eyelid baseline � 0.8 ⇥ (Upper eyelid baseline � Lower eyelid baseline) (4)

4 IMPLEMENTATION AND DATA COLLECTION
We now brie�y describe the hardware we use in our evaluation and hardware-related considerations that impacted
our data collection e�orts.
Hardware platform. We implement iLid on the iShadow computational eyeglass platform that we have
designed and described in prior work (shown in Figure 8) [47, 48]. �e platform uses the Stonyman Vision Chip
produced by Centeye, Inc. [2] as its imager. �e Stonyman camera is a low-power, grayscale, logarithmic-pixel
imager that consumes 3mW and has a resolution of 112x112 pixels. �e key feature of the imager is that it
allows a random-access interface through which speci�c pixels can be selected and acquired. �e random access
capability allows us to reduce the cost of acquiring and digitizing pixels to just the ones that are selected. It also
allows us to increase frame rate to desired levels — even though the Stonyman can only run at around 30fps
when acquiring all pixels, we can operate at much higher frame rates when sub-sampling pixels. �e iShadow
eyeglass uses the STM32L151 microcontroller, which is a very low power ARM Cortex M3 processor [5] with
48KB of memory. All the algorithms described in this paper are implemented directly on this micro-controller.
Note that while the iShadow version shown in Figure 8 has imagers that project a li�le from the eyeglass, a newer
version of the hardware has imagers that are more integrated into the eyeglass frame.
Dataset Collection. Our evaluation includes 5 di�erent datasets that capture di�erent parameter, confounder,
and variability se�ings. All of these datasets were collected under Institutional Review Board approval. We
discuss the parameters of the individual datasets as and when we refer to them in the evaluation, but highlight
one issue that we faced in our data collection e�orts.
A key issue we faced was that we could not capture full 112x112 eye images for ground truth labeling since

the frame rate was too low (roughly 10fps when capturing full images and writing to SD card). �is also meant
that data collected and labeled in our prior work [47, 48] was not useful for us since the frame rate was 10fps,
and it missed many blinks.
Instead, we captured 11 columns of a partial eye image (i.e. 11x112 pixels) — only four of these columns are

needed for most of the algorithms outlined in this paper (except the optimization to deal with specular re�ections
as outlined in §3.1), but the 11 columns helped to be�er visualize the frames and hand-label the eyelid positions
and blink instances. We could capture frames at a rate of 60Hz using this method which is su�cient to extract
even fast blinks. In a live system, since we only need to sample less than half the number of columns, we can
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go more than twice as fast, which would be ideal for PERCLOS measurement based on [57]. However, this
modi�cation also meant that we collect all data anew.

5 EVALUATION
We now turn to an evaluation of our system. Our evaluation is exhaustive and includes evaluation of diverse
aspects ranging from robustness to comparison against an alternate wearable eyeglass. We structure the evaluation
as follows:

• Aggregate results: We begin with aggregate results that capture how well we are able to extract eye
closure parameters under di�erent conditions for sixteen subjects. �ese aggregate results show that our
techniques perform very well overall.

• Robustness to variability: We then present careful experiments under many di�erent conditions including
eyeglass shi�, illumination changes, and wearer mobility, to show robustness of our techniques to such
variations.

• Comparison against JINS MEME: We present a comparison against another low-power eyeglass, JINS
MEME, to understand the di�erence in performance between EOG and vision-based methods in detecting
eye closure pa�erns.

• Implementation benchmarks: Finally, we present our implementation benchmarks for implementing our
algorithm on the iShadow platform that we described in earlier work [47, 48].

5.1 Aggregate Results
Our �rst set of results provide an aggregate view of the performance of iLid. In this set of experiments, we focus
on ge�ing a diverse dataset across indoor and outdoor se�ings, and di�erent genders and ethnicities.

5.1.1 Datasets and Ground Truth Labeling. We collected several datasets to validate our methods:

• Indoor Dataset (Fixed illumination): �is dataset was collected from 16 subjects, 10 male and 6 female
with average age of 22 from four di�erent ethnicities including White-American, Middle-Eastern, Indian,
and Asian. �e experiment consists of the subjects watching a short animated movie for 5 minutes
while wearing the computational glasses. In order to induce dynamic and challenging eye situations, a
dynamic-themed animation is chosen and the subjects are asked to follow an object in the movie. Partial
images of the eye (11 columns of pixels) are captured in 60Hz frame rate resulting in 18,000 frames per
subject and 288,000 frames in total for all 16 subjects.

• Outdoor Dataset (Uncontrolled illumination): �e same experiment is conducted on the same 16
subjects but in an outdoor environment with uncontrolled and varying illumination conditions for
di�erent subjects, resulting in 288,000 frames of partial eye images.

• Ground Truth Labeling: For ground truth, we hand-labeled the upper eyelid location in each frame
using the following approach. �e distance between the upper and lower eyelid is divided into 10 equally
spaced segments that are roughly two or three pixels wide (depending on the open and shut levels
obtained from calibration). �e number of segments was chosen based on the fact that the thickness
of the eyelid itself is around two pixels, so it is di�cult to label at a �ner granularity. �e labels were
con�rmed by a second individual to ensure correctness.

5.1.2 Blink Detection. We �rst evaluate the performance of the blink detection algorithm in terms of its ability
to recognize blink instances. �is is evaluated using precision, recall and F1 score. We use leave-one-out cross
validation — the classi�er is trained using the data from 15 subjects (both indoor and outdoor datasets combined
for training) and tested on the last subject and this set is rotated so that the classi�er is tested on all 16 subjects
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Dataset Precision Recall F1 score
indoor 0.96 0.85 0.90
outdoor 0.95 0.84 0.89

Table 3. Blink detection accuracy (over 1760 blink instances).

Fig. 9. Breakdown of each analytic component’s contribution to overall results. The baseline represents basic eyelid detection
(ED) + logistic regression classification, the second bar includes specular reflection and pupil removal (SPF) and the final bar
includes templates (TM) (i.e. the entire pipeline).

in both indoor and outdoor datasets. Our dataset from 16 subjects included 643 blink instances in the indoor
dataset and 1117 blink instances in the outdoor dataset.
Table 3 shows that we achieve high precision (roughly 0.95) and high recall (roughly 0.85) for both indoor

and outdoor datasets. �e blink detector shows virtually the same performance for both indoor and outdoor
situations, which validates its ability to operate e�ectively across di�erent illumination conditions that one might
encounter in a real-world se�ing.
We now breakdown the contributions of individual components of the pipeline to the overall result to see

how much each of them ma�ers towards the overall result. Figure 9 shows the breakdown – we start with an
approach that only uses eyelid detection based on the �rst peak observed (a�er median �ltering) together with
logistic regression to detect eye closure, then we add specular re�ection removal and pupil removal components,
and �nally we add the templates as features to the classi�er. We see that each of these methods is important for
the overall results, with most of the improvements coming in terms of improved recall. Each of the stages adds
about 10% or more to the recall and corresponding improvements in the F1-score. �us, both design components
play a crucial role in the strong aggregate results.
We further breakdown the result across individual subjects in Figure 10, which depicts the F1 score for each

subject in both indoor and outdoor separately. �is helps us understand whether there is signi�cant variability
across individuals. While the results are generally consistently high across subjects, the numbers for Subject 6
seems to show a signi�cant di�erence in performance between the outdoor and indoor environment. We found
the reason to be simply the fact that the subject had very few blinks (less than 10) in the 5-minute experiment
period; we do not have enough data for the individual to draw conclusions regarding the accuracy of our methods.

5.1.3 Blink duration estimation. Once blinks are detected, we extract blink duration, which is a key feature for
detecting fatigue. We evaluate the accuracy of blink duration estimation by comparing the actual and measured
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Fig. 10. Blink detector performance for individual subjects.

Fig. 11. Blink duration measurement error CDF.

duration of the correctly detected blinks. �e error is calculated in frame numbers and converted to milliseconds
given the constant 60Hz frame rate of the camera.
Figure 11 shows the error CDF of measured duration of correctly detected blinks. Our methods perform

extremely well in this regard — more than 95% of the detected blinks had error of less than 17ms (i.e. less than
10% of a typical 200ms blink). �is equals the distance of two consecutive frames given the 60Hz frame rate of
the imaging device, so we are within one frame of the actual blink duration estimate. Overall, the mean relative
error for blink duration was measured as only 2.4%, thus, we can estimate blink duration accurately.

5.1.4 PERCLOS estimation. In this evaluation, we look at how well we determine PERCLOS. Since PERCLOS
is essentially a measure of the percentage of eye closure, we divide frames into di�erent stages of eye closure,
and see how well we can detect these stages. In other words, we partition the ground truth eyelid position data
into frames where the eye was between 50%-60% closed, 60%-70% closed, and so on until 90%-100% closed. �en
we evaluate the performance of our eyelid detector in classifying all the frames based on the detected level of eye
closure. We then evaluate the precision and recall for classifying the eye closure in each of these partitions.
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Fig. 12. Eyelid detector performance in di�erent eye closure states.

Figure 12 depicts eyelid detector’s performance in �ve di�erent eye closure states corresponding to the eye
being 50-60%, 60-70%, 70-80%, 80-90%, and 90-100% closed. �is gives us an idea of how the error is distributed in
di�erent eye states. �e F1 score of the detection in each of the 5 classes is shown for both indoor and outdoor
datasets across all subjects. As can be seen in the �gure, the detector shows excellent performance across all the
eye closure states. Of particular interest to PERCLOS estimation is the accuracy for detecting when the eye is
more than 80% closed. �e accuracy of this detection is 97.5%, which shows that our methods are e�ective for
determining PERCLOS.

5.2 Robustness to variability
Our next set of results look at the robustness of our techniques to di�erent conditions. �e dataset in this section
is collected from �ve subjects, 3 males and 2 females with average age of 23 under a variety of conditions.

5.2.1 Robustness to illumination. To look at the sensitivity to outdoor illumination, we look at results at
di�erent times of day to see if the results show variation. Note that while the results in §5.1 were under di�erent
illumination conditions, this set of results provides a more systematic comparison under di�erent outdoor
illuminations. �e experiment is conducted outdoors at 3 di�erent times during the day for each subject. �e
three sessions are held at 10AM, 3PM, and 6PM, when the total intensity of IR light in the near infrared range
(NIR) was measured as 10w/cm2, 5w/cm2, and 0.1mw/cm2 respectively using a light meter equipped with the
same IR �lter as that of the iShadow eyeglasses. In each 5 minute session the subject are asked to watch a video
clip while wearing the iShadow eyeglasses.

�e results are shown in Table 4 and Figure 13, which depict the blink detection and eyelid detection performance
respectively. �e results show that blink detection has almost the same performance during di�erent times of
the day and hence di�erent illumination conditions. �e eyelid detection also shows robustness to illumination
changes speci�cally for cases when eye closure percentage is higher than 60%. �e lower performance of the
eyelid detector in low light is due to the fact that the contrast between the pupil and iris becomes sharper in such
situations. �is causes errors in the eyelid detection speci�cally when the eye is in about 50% closure where the
pupil is usually present. Despite this issue, the positive is that measures such as PERCLOS are de�ned for higher
eye closure levels (80%), where performance does not degrade.

5.2.2 Robustness to eyeglass displacement. One issue that we need to address in mobile se�ings is eyeglass
shi�s. Small shi�s of the eyeglass down the nose-bridge is a common occurrence, particularly when an individual
is mobile. To verify this, we look at sensitivity to eyeglass shi�s across �ve individuals. We construct spacers of
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Dataset Precision Recall F1 score
10AM 0.99 0.88 0.93
3PM 0.92 0.97 0.94
6PM 0.97 0.89 0.93

Table 4. Blink detection performance in di�erent illumination conditions.

Fig. 13. Eyelid detection performance in di�erent illumination conditions.

di�erent lengths (0.5cm, 1cm, and 1.5cm) and placed these spacers between the eyeglass and the forehead. �is
allowed us to verify performance under a controlled set of distances. Note that typical eyeglass shi�s are much
less than 0.5cm - typically only a few millimeters. We use larger distances to understand how the performance
degrades as distance increases. �e experiment is conducted under controlled lighting conditions. �e experiment
consists of 4 sessions for each subject as they are asked to watch a video clip for 5 minutes while wearing the
iShadow eyeglasses equipped with a speci�c spacer in each session.
�e performance of the blink detection module is shown in Figure 14. As it can be seen, the performance

decreases almost linearly as the distance of eyeglasses to their normal position increases. However, the slope of
the graph, i.e. the sensitivity is small enough so that even at a spacer size of 1.5cm, which relates to the case of
the eyeglasses positioned almost at the tip of the nose the blink detection achieves an F1 score of more than 0.7.
�e reason for this decrease of performance is mostly due to the fact that the height of the blinks become smaller
as the eyeglasses get further from the eye which makes it harder to detect the originally small blinks.
Figure 15 shows the performance of eyelid detector module in detecting eyelid positions corresponding to

di�erent levels of eye closure with respect to degree of displacement caused by using di�erent spacers. As
expected, the eyelid detection performance reduces with increase in the distance of the eyeglass from the eye.
�is decreases in performance, however, is not signi�cant for displacement values equal or less than 1cm. Even
for displacement value of 1.5cm the performance remains satisfactory for eye closure percentages more than 70%,
which is our region of interest given the de�nition of PERCLOS. �e general reason for decrease of performance
with larger displacements is the fact that the total number of pixels containing the eye reduces as the eyeglasses
are distanced from the eye, which leads to lower signal to noise ratio.
It should be noted that, although the eyelid detection performs robustly with respect to displacement, the

PERCLOS measurement would be a�ected by the displacement in that the total size of the eye in pixels as well as
the lower eyelid position changes as the camera goes further from the eye. However, we �nd that for typical
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Fig. 14. Blink detection performance versus di�erent eyeglass displacement values.

Fig. 15. Eyelid detection performance for di�erent eyeglass displacement values.

displacements less than 0.5cm, this change is negligible (less than 2% of the eye diameter) given the current
resolution of the iShadow imager, therefore the e�ect on PERCLOS estimation is low.

5.2.3 Robustness to mobility-induced variability. Since our algorithms are intended for the mobile scenario, one
important question is whether performance degrades when the user is mobile. To understand this, we performed
a controlled experiment where each participant wore the iShadow platform while walking on a treadmill and
investigated our algorithm’s blink detection and eyelid detection performance. �e experiment consists of two 5
minute sessions for each subject. In one session the subjects are asked to walk on a treadmill with a speed of
2 miles/hour while wearing the iShadow eyeglasses. �e other session includes the same subjects watching a
5-minute video clip while si�ing on a chair and wearing the iShadow platform.
Table 5 and Figure 16 compare the blink detection and eyelid detection performances respectively in the

stationary and mobile situations. �e results show no signi�cant superiority of one over the other, which
demonstrates that our algorithms perform well in the presence of natural displacements and vibrations caused by
mobile situations.

5.2.4 Robustness to drowsiness-induced variability. Our experiments so far were done with subjects who were
not drowsy, hence they did not demonstrate natural changes in eyelid location and blinks due to fatigue. To
understand sensitivity to this parameter, we performed a small additional study in a driving simulator. We only
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Dataset Precision Recall F1 score
stationary 0.96 0.82 0.88
mobile 0.94 0.79 0.86

Table 5. Blink detection performance compared in mobile and stationary scenarios.

Fig. 16. Eyelid detection performance compared in mobile and stationary scenarios.

Dataset Precision Recall F1 score
morning session 0.94 0.78 0.85
night session 0.89 0.75 0.81

Table 6. Blink detector sensitivity to drowsiness-induced variability.

had three of the �ve subjects complete this study due to logistical reasons. �e experiment consists of two
10-minute driving sessions in a driving simulator setup. In order to induce fatigue, the �rst driving session was
held in the morning when the subjects are expected to be alert and conscious. To make sure that this is the case,
the subjects were chosen based on the results of a questionnaire which validated that they could be considered
as “morning people”. �e subjects are then asked not to take a nap or drink ca�einated drinks until the second
driving session in the evening of the same day.
Figure 17 compares our algorithm’s measured PERCLOS value to the ground truth for one of the subjects in

the night session. �e graph shows how our method could closely follow the actual PERCLOS pa�ern. Moreover,
Table 6 shows a comparison between iLid’s blink detection performance for the morning session versus the
evening session across three subjects. Our results show that the performance of blink detection which is required
for PERCLOS measurement is not a�ected by the potential changes in eye closure pa�ern induced by drowsiness.

5.3 Comparison against JINS MEME
We now turn to evaluation against a recently released wearable eyeglass, the JINS MEME, that is also designed
to be low-power and provide measures of the eye. �is platform uses Electrooculography (EOG) using three
electrodes in order to read eye movements in horizontal and vertical directions. As we described in §2.3, EOG
has limitations in terms of capturing �ne-grained movements of the eyelid, and is more appropriate for saccadic
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Fig. 17. PERCLOS results for the driving simulator experiment. The vertical axis represents PERCLOS value and the horizontal
axis shows time in seconds. The measured PERCLOS values is represented with the blue solid line and the dashed orange
line shows the ground truth.

movements of the eye. While this may be true in principle, our goal in this section is to quantify the gap between
EOG-based and vision-based methods for fatigue measurement on a wearable device.
Our experiments is conducted on 5 subjects, 3 males and 2 females, and consists of 3 sessions of 5 minutes

in length for each subject. In the �rst session, the subjects are asked to watch a video clip for 5 minutes while
wearing computational eyeglasses. In the second session the subjects recite a pre-de�ned conversation, and
the last session consists of the same subjects walking on a treadmill with a speed of 2 miles/hour. �e same
experiment is conducted for both the JINS MEME and iShadow. �e EOG time-series measured by the JINS MEME
and the eyelid location time-series measured by our eyelid locater running on iShadow are both logged to be
used for more analysis and comparison o�ine. In order to extract the ground truth for JINS MEME experiments
in terms of the blink instances, close-ups of the subjects are �lmed and time-synchronized with the JINS MEME
measurements.

One issue that we faced was how to perform a fair comparison between the two approaches. Ideally, we would
like our experiment to compare the intrinsic information regarding eyelid closures contained in the EOG stream
versus the pixel stream. In other words, we want to make sure that the comparison is not in�uenced by some
uneven feature extraction or preprocessing method for either of the two approaches.
In order to realize this goal and achieve a fair comparison, we consider two time-series streams: a) the EOG

stream from the JINS MEME consisting of 4 pairs of channels (vertical, horizontal, le�, and right), and b) the
Eyelid detection stream output by our eyelid detection module (§3.1). We then train an ensemble classi�er to
detect blink instances on these streams, taking care to optimize the hyperparameters for each of them separately.
For both streams, 300ms windows of the time-series are chosen as feature vectors. �e performance is then
evaluated on a leave-one-out basis in that the classi�ers are trained with the data from 4 subjects and then tested
on the 5th one.

�e results shown in Figure 18 clearly demonstrate the superiority of iLid as a representative of imager-based
computational eyeglasses compared to JINS MEME as an EOG-based computational eyeglass. (Note that the
performance of iLid is lower than our results reported in earlier sections because we do not leverage our optimized
classi�cation pipeline.) First, the overall performance of the imager-based classi�er signi�cantly exceeds the
other, particularly in cases where there is co-occuring activity involving muscle movements. For example, when
the subjects are talking (Figure 19c), other muscles on the face are being used that create electrical signals and
add to the signals coming from eyeball movements. Since the EOG signal is simply an addition over all electrical
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Fig. 18. Comparing blink detection performance of a preliminary version of iLid with JINS MEME. The performance of both
platforms are shown in three di�erent scenarios. Error bars represent standard error.

activity, it becomes very di�cult to separate these components. Second, the EOG-based classi�er is also highly
sensitive to mobility. While investigating the reason for this vulnerability, we found out that any movement
induces signi�cant amount of noise on the EOG readings from JINS MEME, which consequently makes the
problem of eyelid detection di�cult. Such noise is more signi�cant when the source of movement is closer to the
eye, but even gross body movements have a signi�cant e�ect on the signal.

So far, we have looked at blink detection but how about measures of the eyelid like PERCLOS that is essential
for fatigue detection. EOG is fundamentally not suited for these measures since it basically captures the eyeball
movements while other movements such as that of the eyelid add as noises to the main signal. �is means that
there exists no mapping from the EOG signal to the position of the eyelid even though one might be able to
detect transient movements of the eyelid based on the EOG signal (as shown in Figure 19). As a result, the EOG
signal intrinsically cannot di�erentiate between the eyelid being 80% closed versus being wide open since both
appear as a �at line.

5.4 Implementation on iShadow
We now evaluate the power consumption of our algorithm when it executes on the iShadow platform. �ere
are various components that consume power in our system including the base power consumed by the micro-
controller (MCU) and the imager, the power consumed by the NIR (near-infrared) LEDs, the power consumed
for pixel acquisition from the camera, and the power consumed for the computation stages (eyelid detection,
template matching, classi�cation, and PERCLOS estimation). We measure the power consumption of our system
by running the end-to-end system on the eyeglass platform, and measure the power using a DAQ running at a
10KHz sampling rate.

Since we use the ultra-low-power STM32L151 MCU and the low-power Stonyman imager, the base power
consumption is generally negligible since the MCU and the imager consume very li�le in deep sleep mode. We
measured the current draw over the baseline power to be 14mA at 3.3V i.e. 46mW while operating at 100Hz. �e
power consumption drops proportionally with frame rate, so if we reduce the frame rate to 60Hz, this reduces to
about 27mW. Most of the power is consumed by the MCU itself since the two NIR LEDs operate in low voltage
mode, and the imager consumes only a few milliwa�s. We expect that these numbers can be further reduced
through various optimizations at the MCU (including addressing some hardware kinks in the iShadow device as
well as using more power-e�cient micro-controllers), but this is already promising in terms of having a device
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(a) Blink (b) Slow closure and opening of the eyelid (c) During talking

Fig. 19. JINS MEME’s EOG signal output. The signal consists of 4 channels of vertical (V), horizontal (H), le� (L), and right
(R). Figure (a) shows the EOG signal corresponding to a blink when the person is completely stationary. Figure (b) shows
the EOG signal relating to 4 di�erent states of the eye. Segment 0 shows a period when the eyes are wide open. Segment 1
corresponds to a case when the eyes are slowly closed which is followed by segment 2, in which the eyes are kept closed. In
segment 3 the eyes are slowly opened again. As it can be seen the EOG signal is the same for segments 2 and 0 which relate
to steady cases when the eyes are kept closed and open respectively. Figure (c) also depicts the cross talk on the EOG signal
induced by talking.

capable of continuous operation for several hours on a wearable eyeglass. Using a 570mAh ba�ery, such as the
type used on Google Glass, the platform could run up to two days with the current se�ings.

6 CONCLUSIONS AND FUTURE WORK
In summary, this work is the �rst to show that we can extract a variety of features that are pertinent for fatigue
detection including rate of blinks, blink duration and percentage of eye closure in real-time and low-power on a
wearable eyeglass. Our methods are accurate across a range of individuals, and robust to illumination conditions,
eyeglass shi�s, and user mobility. In addition, our system operates at rates upwards of 60fps while consuming
only 27mW of power in the process. Blink and eye closure features are the cornerstone of fatigue and drowsiness
detectors that can operate in the real world. We believe that this work paves the way for a regular spectacles
form-factor device that has built-in ability to monitor cognitive state in real-time.
�ere are many directions that we are continuing to explore beyond the scope of this paper. One of these is

conducting long term user studies in more natural environments. �is would allow us to extract eye-related
features at di�erent levels of fatigue during the day, allowing us to observe eye-related pa�erns at longer
timescales than what we have been able to do currently. �is can allow us to extract higher level information
such as the relation between the measured fatigue and blink rate with the behavior pa�erns of the subject. We
are also exploring clinical ideas that build on this work, including detection of fatigue level in cancer patients.
Such a longitudinal study would also reveal if there are instances of eyeglass shi�s and displacements that we
may not have addressed in this paper. An example could be rotations of the eyeglasses around the vertical axis if
people put pressure no it while resting their head in their hand. �ese situations may be important since they
relate to fatigue. We will look at these cases in our future work.
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Åkerstedt. 2013. Fit-for-duty test for estimation of drivers? sleepiness level: eye movements improve the sleep/wake predictor.
Transportation research part C: emerging technologies 26 (2013), 20–32.

[12] Rizwan Ahmad. 2016. Understanding the Language of the Eye: Detecting and Identifying Eye Events in Real Time via Electrooculography.
(2016). h�p://www.escholarship.org/uc/item/53n1p2z5

[13] Tobias Appel,�iago Santini, and Enkelejda Kasneci. 2016. Brightness-and motion-based blink detection for head-mounted eye trackers.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM, 1726–1735.

[14] Ioana Bacivarov, Mircea Ionita, and Peter Corcoran. 2008. Statistical models of appearance for eye tracking and eye-blink detection and
measurement. IEEE transactions on consumer electronics 54, 3 (2008).

[15] P. L. Benitez, G. H. Kamimori, T. J. Balkin, A. Greene, and M. L. Johnson. 2009. Modeling fatigue over sleep deprivation, circadian
rhythm, and ca�eine with a minimal performance inhibitor model. Meth. Enzymol. 454 (2009), 405–421.
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